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Introduction to the

Proof Method 1.Dv (E>~G)
2.~DeG

3. Why does it work?

Rules are Truth Preserving

If they are applied to only true
lines, they will produce only
true lines

1.Dv (E>~G)
2.~D e G

3. ~D




First two Inference Rules

Modus Tollens (MT)

P2y
~y

1.(AeB)>C
2.AeB

3.C
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1.(AeB)oC

2[AsB]
3.C]

/. C
1,2 MP

Note: The greek statement
variables can stand for
simple or compound
statements

/A=K

1,4 MT

This means that one must be
the negation of the other. But
which one has the actual tilde
on it doesn’t matter.

/A=K

1,4 MT

Note: A tilde in the written rule
means that the statement with
the tilde must be the negation
of that same statement
without the tilde.

/A=K

1,4 MT

In the written rules, interpret
tildes as ‘negation of’, and
keep in mind that a statement
can be negated by adding or
subtracting one tilde.
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Three more Three more
Inference Rules Inference Rules

Disjunctive Syllogism (DS) Hypothetical Syllogism (HS)

¢y
Qv vy

~@
. IP ﬁGﬁa—f

Three more 1.Dv (E>~G)
Inference Rules 2.~DeG

Simplification (simp)

Pey

)

1.Dv (E>~G) 1.Dv (E> ~G)
2.~DeG 2.~D e G
3.G 3.G

4. ~D
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. ~K

/-.B>D
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.(BoA)e (C>oD)

. ~B

. Bv~K

.~(A> D)oK /..B>D

2, 3DS

.(BoA)e (CoD)

~B

. Bv~K

.~(A>D)>oK /..B>D

2,3 DS
5,4 MT 5,4 MT
1 simp 1 simp

6, 7 HS
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.D .D

.H>~J]

.~Dv (HvVvH)
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.(ReD)>~]
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D

.H>~J]

.HvH
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OCON O UTAWNKF

1
2
3
4
5.
6
7
8.
9.

.~Dv(HvVvH)
.~Re (H>~J)
.(ReD)>~]
.(Ho~J)o(H>R)

D

.H>o~]
.HvH

.~Dv(HvVH)
.~Re (H>~J)
.(ReD)>~]
.(Ho~J)o(H>R)

D

.H>o~]
.HvH

.~(RoR)VvK
.R> (S eK)
.~(SeA)>~K
.(SeK)DR
.A>(B>~K)

OCON O U1hAhWNH
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OWCONO U1 AhWNHR

.~(RoR)VvK
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.A>(B>~K)
.R>R

. K

.~(RoR)VvK
.R> (S eK)
.~(SeA)>~K
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Dilemma (dil)

@2y

x>8
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Disjunction Introduction (DI)

1.(DvG)o(Av (O
2.De (ADG)
3.CoH /.De(HVG)

.(DvG)>(Av (O
.De (ADG)
.CoH /. De(HvVG)

. D 2 simp
.DvG 4, DI
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1
2
3
4
)
6
7
8
9

.(DvG)>(Av (O

.De (ADQG)

.CoH ~De(HVG)
. D 2 simp
.DVvG 4, DI
.AvC 1, 5 MP
.ADG 2 simp

.(DvG)>(Av (O

.De (ADQG)

.CoH ~De(HVG)
. D 2 simp
.DvG 4, DI
.AvC 1, 5MP
.ADG 2 simp
.HvVvG 3, 6, 7 dil
.De(HVG) 4, 8 conj

.(~A>~C)> A
.Co(~A>~0)
. ~A

. ~(~A>~0)

0O NOUh, WNH

.(DvG)>o(Av ()
.De (ADG)
.CoH

D

.DvG
.Av C
.ADG
.HvG

.(~A>~C)>A
.Co(~A>~0)
. ~A

.(~A>~C)>A
.Co(~A>~0)
. ~A
.~(~A>~C)
e

/..De(HvVG)

2 simp

4, DI

1, 5 MP

2 simp
3, 6, 7 dil
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.(~A>~C)> A
.Co(~A>~0)
. ~A

. ~(~A> ~C)
e

.(~A>~C)> A
.Co(~A>~0)
. ~A

. ~(~A > ~C)

. ~C
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1,2 HS
2, 3, 4 dil

1
p
3
4,
5
6.
7.
8

Conditional Proof
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Conditional Proof

First of two proof strategies using
‘subproofs’

Basic idea: prove the conditional

@ D> Y is true, by assuming ¢ and
deriving V.

Conditional Proof

Keep deriving lines until you derive 1.
At this point, we don’ t know whether @
is actually true, since we just assumed
it, nor do we know whether 4 is true,
but we have shown that if ¢ were true,
then ¢y would be true.

Rules for the use of CP

. Start subproof (SP) by indenting
and designating first line ACP

. CP ends any time you want

. Mark off CP, closing SP and
discharging assumption

. The next line after the closed
CP SP can only be a conditional
whose antecedent is the ACP and
whose consequent is the last
line of the CP SP

17.04.15

Conditional Proof

At some point in a proof, you decide

you’d like to be able to derive ¢ >
on a line, but you can’t figure out how.

Add an assumption line consisting of @,
then proceed using the rules.

Conditional Proof

But this fact that the subproof
demonstrated, that if @ were true, then
Y would be true, just is what the

conditional @ > Y means. So the
subproof shows that the conditional
can be validly inferred.

Rules for the use of CP

5. All SPs must be closed before
the proof can end

6. Once a SP has been closed,
no lines in it may be used
or cited
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01.GoT 01.GoT
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03. — G

01.GoT

02. (TvS)oK
03. — G

04. T

05. TvS
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01.GoT

02. (TvS)oK
03.
04.
05.
06.

01.Co> (A eD)
02.B> (A eE) /~(CvB)VvA
03. —CvB ACP

.Co>(AeD)

.Bo>(AeE) /~(CvB)VvA

.—CvB ACP
(AeD)Vv(AeE) 1,2, 3dil
Ae (DvVE) 4 dist

01. C> (A e D)
02.B > (A e E)

.Co(AeD)
.Bo(AeE)
.—CvVvB

/. ~(CvB)VvA

/~(CvB)VvA
ACP

(s DY e EY et D il

.Co(AeD)
.Bo(AeE)
.—CvVvB

A e (DV E)
A

/~(CvB)VvA
ACP
(AeD)V(AeE) 1,2, 3dil

4 dist
5 simp
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01.Co>(AeD)
02. B> (A eE)
03. CvB

/.~(CvB)VvA

ACP

Gl ca D) v e E e Dol

05.| Ae(DVE)

06. A

01.Co>(AeD)
02. B> (A eE)
03. CvB

4 dist
5 simp

/~(CvB)VvA

ACP

Gl cas D) i e E e D ol

05.| Ae(DVE)

06. A
07.(CvB)o A
08. ~(CvB)VvA

4 dist

5 simp
3-6 CP
7 CE

.Co(AeD)
.B>(AeE)
CvB

s~(CvB)VvA

ACP

(AeD)Vv(AeE) 1,2, 3dil

A e (D VE)
: A
.(CvB)o A

.C>(AeD)
.Bo(AeE)

4 dist
5 simp
3-6 CP

s~(CvB)VvA

ACP

; CvB
.l:(AoD)v(AoE) 1, 2, 3dil

A e (D Vv E)

4 dist

. (Cv B)>[Ae(D v E)] 3-5CP
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