Truth functions, evaluating compound statements

Truth functions, evaluating compound statements

1. Functions, arithmetic functions, and truth functions

Truth functions, evaluating compound statements
 1. Functions, arithmetic functions, and truth functions
 2. Definitions of truth functions

Truth functions, evaluating compound statements

1. Functions, arithmetic functions, and truth functions
2. Definitions of truth functions
3. Evaluating compound expressions

Truth functions, evaluating compound statements

1. Functions, arithmetic functions, and truth functions
2. Definitions of truth functions
3. Evaluating compound expressions
4. Categorizing statements (contingencies, tautologies, contradictions)
5. Relations between statements (equivalence, consistency, implication, validity)

Functions

A function is something that takes inputs and produces outputs.

Functions

Arithmetic Functions

A function is something that takes inputs and produces outputs.

You can think of it as a sort of abstract machine - like a bread machine that will produce as 'output' bread, if it is given as 'input' flour, yeast, sugar, etc.

Arithmetic Functions

Familiar examples of functions are the arithmetic functions addition, subtraction,

Arithmetic Functions

Familiar examples of functions are the arithmetic functions addition, subtraction, multiplication and division

Addition takes 2 numbers as input, and produces 1 number as output

Arithmetic Functions

Familiar examples of functions are the arithmetic functions addition, subtraction, multiplication and division

Addition takes 2 numbers as input, and produces 1 number as output

If you input 4 and 3, it outputs 7

Addition takes 2 numbers as input, and produces 1 number as output

If you input 4 and 3, it outputs 7
A function can be defined in terms of its entire input-output structure

Addition takes 2 numbers as input, and produces 1 number as output
If you input 4 and 3, it outputs 7

Addition takes 2 numbers as input, and produces 1 number as output

If you input 4 and 3, it outputs 7
A function can be defined in terms of its entire input-output structure
Input 1

	Input 2	Output
x	y	$\mathrm{x}+\mathrm{y}$
1	1	2
1	2	3
2	1	3
2	2	4

A function can be defined in terms of its entire input-output structure
Addition '+'

x	y	$x+y$
1	1	2
1	2	3
2	1	3
2	2	4

A function can be defined in terms of its entire input-output structure

Addition '+'

Rickification ' \wedge '

x	y	$x+y$
1	1	2
1	2	3
2	1	3
2	2	4

x	y	$x \wedge y$
1	1	2
1	2	3
2	1	3
2	2	4

Addition ' + '			Subtraction '-'		
X	y	$x+y$	X	y	$x-y$
1	1	2	1	1	0
1	2	3	1	2	-1
2	1	3	2	1	1
2	2	4	2	2	0
Multiplication ' x '			Division '+'		
X	y	$x \times y$	X	y	$x \div y$
1	1	1	1	1	1
1	2	2	1	2	0.5
2	1	2	2	1	2
2	2	4	2	2	1

Truth Functions

Truth Functions

Truth functions are functions that take truth values as inputs, and produce truth values as outputs.

There are two truth values:
True (T)
False (F)

Truth Functions

Truth functions are functions that take truth values as inputs, and produce truth values as outputs.

Truth Functions

Truth functions are functions that take truth values as inputs, and produce truth values as outputs.

There are two truth values:
True (T)
False (F)
Every atomic statement is either True or False

The statement operators that form compound statements (conjunction, negation, etc.) symbolize truth functions.

The statement operators that form compound statements (conjunction, negation, etc.) symbolize truth functions.

H = I left you my house.
$C=I$ left you my car.

The statement operators that form compound statements (conjunction, negation, etc.)
symbolize truth functions.
H = I left you my house.

$$
\mathrm{C}=\mathrm{I} \text { left you my car. }
$$

I left you my house and I left you my
car. ($\mathrm{H} \bullet \mathrm{C}$)

The statement operators that form compound statements (conjunction, negation, etc.) symbolize truth functions.

$$
\begin{aligned}
& \mathrm{H}=\mathrm{I} \text { left you my house. } \\
& \mathrm{C}=\mathrm{I} \text { left you my car. }
\end{aligned}
$$

I left you my house and I left you my car. ($\mathrm{H} \bullet \mathrm{C}$)

H	C	$H \bullet C$
T	T	

The statement operators that form compound statements (conjunction, negation, etc.) symbolize truth functions.
$\mathrm{H}=\mathrm{I}$ left you my house.
$\mathrm{C}=\mathrm{I}$ left you my car.

I left you my house and I left you my car. ($\mathrm{H} \bullet \mathrm{C}$)

The statement operators that form compound statements (conjunction, negation, etc.) symbolize truth functions.
$\mathrm{H}=\mathrm{I}$ left you my house.
$\mathrm{C}=\mathrm{I}$ left you my car.
I left you my house and I left you my car. (H•C)

H	C	$H \bullet C$
T	T	T
T	F	F

The statement operators that form compound statements (conjunction, negation, etc.) symbolize truth functions.

$$
\begin{aligned}
& \mathrm{H}=\mathrm{I} \text { left you my house. } \\
& \mathrm{C}=\mathrm{I} \text { left you my car. }
\end{aligned}
$$

I left you my house and I left you my
car. ($\mathrm{H} \bullet \mathrm{C}$)

H	C	$H \bullet C$
T	T	T
T	F	F
F	T	F

The statement operators that form compound statements (conjunction, negation, etc.) symbolize truth functions.

H = I left you my house.
C = I left you my car.
I left you my house and I left you my car. ($\mathrm{H} \bullet \mathrm{C}$)

H	C	$H \bullet C$
T	T	T
T	F	F
F	T	F
F	F	F

The statement operators that form compound statements (conjunction, negation, etc.) symbolize truth functions.

H = I left you my house.
C = I left you my car.
I left you my house and I left you my car. (H•C)

The statement operators that form compound statements (conjunction, negation, etc.) symbolize truth functions.

$$
\begin{aligned}
& \mathrm{H}=\mathrm{I} \text { left you my house. } \\
& \mathrm{C}=\mathrm{I} \text { left you my car. }
\end{aligned}
$$

I left you my house and I left you my car. ($\mathrm{H} \bullet \mathrm{C}$)

H	C	$H \bullet C$
T	T	T
T	F	F
F	T	F
F	F	

Five truth functions

Conjunction

Conjunction

φ	ψ	$\varphi \bullet \psi$
T	T	T
T	F	F
F	T	F
F	F	F

Negation
Negation
I am married.
I am not married.

Negation

I am married.
I am not married.

φ	$\sim \varphi$
T	

Negation

I am married.
I am not married.

φ	$\sim \varphi$
T	F

Negation

> I am married.
> I am not married.

φ	$\sim \varphi$
T	F
F	

Negation

I am married.
I am not married.

φ	$\sim \varphi$
T	F
F	T

Disjunction

Disjunction

Shelly won Lotto
Shelly got a big inheritance

Disjunction

```
Shelly won Lotto
Shelly got a big inheritance
Either Shelly won Lotto, or Shelly got a big inheritance.
```


Disjunction

Shelly won Lotto
Shelly got a big inheritance
Either Shelly won Lotto, or Shelly got a big inheritance.
Shelly either won Lotto or got a big inheritance

Disjunction

Shelly won Lotto
Shelly got a big inheritance
Shelly either won Lotto or got a big inheritance.

Disjunction

Shelly won Lotto
Shelly got a big inheritance
Shelly either won Lotto or got a big inheritance.

φ	ψ	$\varphi \vee \psi$
T	T	T
T	F	

Disjunction

Shelly won Lotto
 Shelly got a big inheritance

Shelly either won Lotto or got a big inheritance.

φ	ψ	$\varphi \vee \psi$
T	T	T
T	F	T
F	T	

Disjunction

Shelly won Lotto
Shelly got a big inheritance
Shelly either won Lotto or got a big inheritance.

φ	ψ	$\varphi \vee \psi$
T	T	T

Disjunction

Shelly won Lotto
Shelly got a big inheritance
Shelly either won Lotto or got a big inheritance.

φ	ψ	$\varphi \vee \psi$
T	T	T
T	F	T

Disjunction

Shelly won Lotto
Shelly got a big inheritance
Shelly either won Lotto or got a big inheritance.

φ	ψ	$\varphi \vee \psi$
T	T	T
T	F	T
F	T	T

Disjunction

Shelly won Lotto
Shelly got a big inheritance
Shelly either won Lotto or got a big inheritance.

φ	ψ	$\varphi \vee \psi$
T	T	T
T	F	T
F	T	T
F	F	

Disjunction

The expression 'or' in English is ambiguous, can express two different truth functions.

You can have soup or salad.

φ	ψ	$\varphi \vee \psi$
T	T	F
T	F	T
F	T	T
F	F	F

Disjunction

Inclusive OR

φ	ψ	$\varphi \vee \psi$
T	T	T
T	F	T
F	T	T
F	F	F

Disjunction

Shelly won Lotto
Shelly got a big inheritance
Shelly either won Lotto or got a big inheritance.

φ	ψ	$\varphi \vee \psi$
T	T	T
T	F	T
F	T	T
F	F	F

Disjunction

The expression 'or' in English is ambiguous, can express two different truth functions.

You can have soup or salad.

φ	ψ	$\varphi v \boldsymbol{\psi}$
T	T	F
T	F	T
F	T	T
F	F	F

Disjunction

Inclusive OR

φ	ψ	$\varphi \vee \psi$
T	T	T
T	F	T
F	T	T
F	F	F

Exclusive OR

φ	ψ	$\varphi \vee \psi$
T	T	F
T	F	T
F	T	T
F	F	F

Disjunction

Inclusive OR

φ	ψ	$\varphi \vee \psi$
T	T	T
T	F	T
F	T	T
F	F	F

You can have soup or salad.

Conditional

Exclusive OR

φ	ψ	$\varphi \vee \psi$
T	T	F
T	F	T
F	T	T
F	F	F

Disjunction

Inclusive OR

φ	ψ	$\varphi \vee \psi$				
T	T	T				
T	F	T				
F	T	T				
F	F	F				
Y			\quad	φ	ψ	$\varphi \vee \psi$
:---:	:---:	:---:				
T	T	F				
T	F	T				
F	T	T				
F	F	F				

You can have soup or salad.

$$
(P \vee D) \bullet \sim(P \bullet D)
$$

Conditional

You turn in all the homework.
I give you an A in the class.

Conditional

You turn in all the homework.
I give you an A in the class.
If you turn in all the homework,
I' ll give you an A in the class.

Conditional

You turn in all the homework.
I give you an A in the class.
If you turn in all the homework,
I' ll give you an A in the class.

φ	ψ	$\varphi \supset \psi$
T	T	

Conditional

You turn in all the homework.
I give you an A in the class.
If you turn in all the homework,
I' ll give you an A in the class.

φ	ψ	$\varphi \supset \psi$
T	T	T

Conditional

You turn in all the homework.
I give you an A in the class.
If you turn in all the homework,
I' ll give you an A in the class.

φ	ψ	$\varphi \supset \psi$
T	T	T
T	F	F

Conditional

You turn in all the homework.
I give you an A in the class.
If you turn in all the homework, I' ll give you an A in the class.

φ	ψ	$\varphi \supset \psi$
T	T	T
T	F	F
F	T	T

Conditional

You turn in all the homework.
I give you an A in the class.
If you turn in all the homework,
I' ll give you an A in the class.

φ	ψ	$\varphi \supset \psi$
T	T	T
T	F	

Conditional

You turn in all the homework.
I give you an A in the class.
If you turn in all the homework,
I' ll give you an A in the class.

φ	ψ	$\varphi \supset \psi$
T	T	T
T	F	F
F	T	

Conditional

You turn in all the homework.
I give you an A in the class.
If you turn in all the homework,
I' ll give you an A in the class.

φ	ψ	$\varphi \supset \psi$
T	T	T
T	F	F
F	T	T
F	F	

Conditional

You turn in all the homework.
I give you an A in the class.
If you turn in all the homework,
I' ll give you an A in the class.

φ	ψ	$\varphi \supset \boldsymbol{\psi}$
T	T	T
T	F	F
F	T	T
F	F	T

Biconditional

You earn a C- or better.
I' ll give you a P

Biconditional

Biconditional

You earn a C- or better.
I' ll give you a P
I' Il give you a P if and only if you earn a C- or better.

Biconditional

You earn a C- or better.
I'll give you a P
I' ll give you a P if and only if you earn a C - or better.

Biconditional

You earn a C- or better.

I'll give you a P
I' ll give you a P if and only if you earn a C- or better.

Biconditional

You earn a C- or better.
I' ll give you a P
I' II give you a P if and only if you earn a C- or better.

φ	ψ	$\varphi \equiv \psi$
T	T	T
T	F	

Biconditional

You earn a C- or better.
I' ll give you a P
I' II give you a P if and only if you earn a C- or better.

φ	ψ	$\varphi \equiv \psi$
T	T	T
T	F	F
F	T	

Biconditional

You earn a C- or better.
I'll give you a P
I' ll give you a P if and only if you earn a C- or better.

φ	ψ	$\varphi \equiv \psi$
T	T	T
T	F	F
F	T	F
F	F	

Biconditional

You earn a C- or better.
I'll give you a P
I' ll give you a P if and only if you earn a C- or better.

φ	ψ	$\varphi \equiv \psi$
T	T	T
T	F	F

Biconditional

You earn a C- or better.
I' ll give you a P
I' ll give you a P if and only if you earn a C- or better.

φ	ψ	$\varphi \equiv \psi$
T	T	T
T	F	F
F	T	F

Biconditional

You earn a C- or better.

I' ll give you a P
I' ll give you a P if and only if you earn a C- or better.

φ	ψ	$\varphi \equiv \psi$
T	T	T
T	F	F
F	T	F
F	F	T

Evaluating compound statements

$$
(P \bullet Q) \vee(Q \equiv P)
$$

Construct a Truth Table
Number of Rows $=2^{n}$
Where n is the number of atomic statements involved: $2^{2}=4$ [plus one on top]

$$
(P \bullet Q) \vee(Q \equiv P)
$$

Construct a Truth Table
Number of Columns: 1 for each statement involved in the compound statement.
$P ; Q ; P \bullet Q ; Q \equiv P ;(P \bullet Q) \vee(Q \equiv P)=5$

$$
(P \bullet Q) \vee(Q \equiv P)
$$

Construct a Truth Table
Number of Columns: 1 for each statement involved in the compound statement.

$$
\mathrm{P} ; \mathrm{Q} ; \mathrm{P} \bullet \mathrm{Q} ; \mathrm{Q} \equiv \mathrm{P} ;(\mathrm{P} \bullet \mathrm{Q}) \vee(\mathrm{Q} \equiv \mathrm{P})=5
$$

$$
(\mathrm{P} \bullet \mathrm{Q}) \vee(\mathrm{Q} \equiv \mathrm{P})
$$

Column 1

Column 4

Column 5

$$
(\mathrm{P} \bullet \mathrm{Q}) \vee(\mathrm{Q} \equiv \mathrm{P})
$$

In the first columns on the "top" row (which is above Row 1), put the atomic statement in alphabetical order

$$
(\mathrm{P} \bullet \mathrm{Q}) \vee(\mathrm{Q} \equiv \mathrm{P})
$$

P	Q			
T	T			
T	F			
F	T			
F	F			

In the columns under the atomic statements, fill out Ts and Fs so that every possible combination of truth values has a row

$$
(P \bullet Q) \vee(Q \equiv P)
$$

P	Q			
T	T			
T	F			
F	T			
F	F			
In the first column, top half Ts and bottom				

In the first column, top half Ts and bottom half Fs.
For each subsequent column, alternate groups of Ts and Fs half the size of the groups of the previous column, until finished.

$$
(P \bullet Q) \vee(Q \equiv P)
$$

P	Q			
T	T			
T	F			
F	T			
F	F			

In the first column, top half Ts and bottom half Fs.
For each subsequent column, alternate groups of Ts and Fs half the size of the groups of the previous column, until finished.

P	Q	$P \bullet Q$	$Q \equiv P$	$(P \bullet Q) \vee(Q \equiv P)$
T	T			
T	F			
F	T			
F	F			d up from th

In subsequent columns, build up from the smallest compound statements to the largest, and fill in its truth column according to the truth function of that operator, and the truth values of the components

P	Q	$\mathrm{P} \bullet \mathrm{Q}$	$\mathrm{Q} \equiv \mathrm{P}$	$(P \bullet Q) \vee(Q \equiv P)$
T	T	T	T	
T	F	F	F	
F	T	F	F	
F	F	F	T	

φ	ψ	$\varphi \equiv \psi$
T	T	T
T	F	F
F	T	F
F	F	T

$$
(P \bullet Q) \vee(Q \equiv P)
$$

P	Q	$\mathrm{P} \bullet \mathrm{Q}$	$\mathrm{Q} \equiv \mathrm{P}$	$(\mathrm{P} \bullet \mathrm{Q}) \vee(\mathrm{Q} \equiv \mathrm{P})$
T	T	T	T	T
T	F	F	F	F
F	T	F	F	F
F	F	F	T	T

φ	ψ	$\varphi \vee \psi$
T	T	T
T	F	T
F	T	T

$\sim(\sim \mathrm{C} \equiv \mathrm{D}) ~ \supset \sim \mathbf{D}$					
C	D	$\sim \mathrm{C}$	$\sim \mathrm{D}$	$\sim \mathrm{C} \equiv \mathrm{D}$	$\sim(\sim \mathrm{C} \equiv \mathrm{D})$
T	$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathrm{D}$				
T	F				
F	T				
F	F				

$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathrm{D}$						
C	D	$\sim \mathrm{C}$	$\sim \mathrm{D}$	$\sim \mathrm{C} \equiv \mathrm{D}$	$\sim(\sim \mathrm{C} \equiv \mathrm{D})$	
T	T	F	$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathrm{D}$			
T	F	F				
F	T	T				
F	F	T				

$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \bigcirc \sim \mathrm{D}$						
C	D	$\sim \mathrm{C}$	~D	$\sim \mathrm{C} \equiv \mathrm{D}$	$\sim(\sim \mathrm{C} \equiv \mathrm{D})$	$\sim(\sim C \equiv D) \supset \sim D$
T	T	F	F			
T	F	F	T			
F	T	T	F			
F	F	T	T			

$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathrm{D}$						
C	D	$\sim \mathrm{C}$	$\sim \mathrm{D}$	$\sim \mathrm{C} \equiv \mathrm{D}$		
$\sim(\sim \mathrm{C} \equiv \mathrm{D})$	$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathrm{D}$					
T	T	F	F	F		
T	F	F	T	T		
F	T	T	F	T		
F	F	T	T	F		

	$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \bigcirc \sim$ D					
C	D	\sim	\sim D	$\sim \mathrm{C} \equiv \mathrm{D}$	$\sim(\sim \mathrm{C} \equiv \mathrm{D})$	$\sim(\sim C \equiv D) \supset \sim D$
T	T	F	F	F	T	
T	F	F	T	T	F	
F	T	T	F	T	F	
F	F	T	T	F	T	

$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathrm{D}$						
C	D	\sim	~D	$\sim \mathrm{C} \equiv \mathrm{D}$	$\sim(\sim \mathrm{C} \equiv \mathrm{D})$	$\sim(\sim C \equiv D) \bigcirc \sim D$
T	T	F	F	F	T	F
T	F	F	T	T	F	T
F	T	T	F	T	F	T
F	F	T	T	F	T	T

$\sim R \supset R$

$$
\sim R \supset R
$$

$\sim R \supset R$

R		
T		
F		

$\sim R \quad$ R

R	$\sim R$	$\sim R \supset R$
T		
F		

$$
\{(G \vee E) \supset \sim K\} \supset \sim(\sim K \bullet \sim E)
$$

$\{(\mathrm{G} v \mathrm{E}) \supset \sim \mathrm{K}\} ~ \supset \sim(\sim K \bullet \sim E)$							
EG	K ~ E	\sim	GvE	$\begin{gathered} (\mathrm{GvE}) \\ \partial \sim \mathrm{K} \end{gathered}$	$\begin{array}{\|c\|} \hline \sim K_{0} \\ \sim E \end{array}$	$\underset{\sim}{\sim(\sim K)} \underset{\sim}{\sim}$	$\begin{gathered} \{(\mathrm{GvE}) \supset \sim K\} \\ \supset \sim(\sim K \bullet \sim E) \end{gathered}$
TT	T						
TT							
T F	T						
T F	F						
FT	T						
F T							
F F	T						
FF	F						

\{(G v E) $\supset \sim$ K\} $\supset \sim(\sim K \bullet \sim E)$							
EG K	K	$\sim K$	GvE	$\begin{gathered} (\mathrm{GvE}) \\ \partial \sim \mathrm{K} \end{gathered}$	$\underset{\sim}{\sim} \underset{\sim}{\sim}$	$\underset{\sim}{\sim(\sim K)} \underset{\sim}{\sim}$	$\begin{gathered} \{(\mathrm{GvE}) \supset \sim K\} \\ \supset \sim(\sim K \bullet \sim \mathrm{E}) \end{gathered}$
TT	T F						
TT ${ }_{\text {T }}$	F						
TF	T F						
TFF	F						
FT	T T						
FT T	T						
FFT	T						
FFFF	F T						

\{(G v E) $\supset \sim K\} \bigcirc \sim(\sim K \bullet \sim E)$							
EGK	K ~	-K	GvE	$\begin{array}{\|c\|} \hline(\mathrm{GvE}) \\ \partial \sim K \end{array}$	$\begin{array}{\|c} \sim K_{0} \\ \sim E \end{array}$	$\underset{\sim}{\sim\left(\sim K_{0}\right.}$	$\begin{gathered} \text { \{(GvE) } \supset \sim K\} \\ \supset \sim(\sim K \bullet \sim E) \end{gathered}$
TTT	T F	F					
TTF	F F	T					
TFT	T F	F					
TFF	F F	T					
FTT	T T	F					
FT F	F T	T					
FFT	T T	F					
F\|FF	F T	T					

$\{(\mathrm{G} \vee \mathrm{E}) \supset \sim \mathrm{K}\} ~ \supset \sim(\sim \mathrm{~K} \bullet \sim \mathrm{E})$							
EGK	~E	-K	GvE	$=\begin{gathered} (\mathrm{GvE}) \\ \partial \sim K \end{gathered}$	$\left.\begin{gathered} \sim K_{0} \\ \sim E \end{gathered} \right\rvert\,$		$\begin{gathered} \hline\{(\mathrm{GvE}) \supset \sim \mathrm{K}\} \\ \supset \sim(\sim \mathrm{K} \bullet \sim \mathrm{E}) \end{gathered}$
TTT	F	F	T				
TTF	F	T	T				
T F T	F	F	T				
TFF	F	T	T				
FTT	T	F	T				
FTF	T	T	T				
FFT	T F	F	F				
FFFFI	T	T	F				

$\{(\mathrm{G} \vee \mathrm{E}) \bigcirc \sim \mathrm{K}\} \bigcirc \sim(\sim K \bullet \sim E)$							
EG K	K ~ E	\sim K	GvE	$\begin{array}{\|c\|} \hline(\mathrm{GvE}) \\ \partial \sim \mathrm{K} \end{array}$	$\underset{\sim}{\sim K_{0}}$	$\begin{gathered} \sim(\sim K \cdot \\ \sim E) \end{gathered}$	$\begin{array}{\|l} \hline\{(\mathrm{GvE}) \supset \sim K\} \\ \supset \sim(\sim K \bullet \sim E) \end{array}$
TT	T F	F	T	F	F		
TT ${ }^{\text {T }}$	F F	T	T	T	F		
T $\mathrm{F}^{\text {- }}$	T F	F	T	F	F		
TFF	F F	T	T	T	F		
FT	T T	F	T	F	F		
FT ${ }^{\text {F }}$	F T	T	T	T	T		
FFT	T T	F	F	T	F		
FFF	F T	T	F	T	T		

\{(G v E) $\supset \sim K\} ~ \supset \sim(\sim K \bullet \sim E)$									
E	G		~E	$\sim \mathrm{K}$	GvE	$\left(\begin{array}{c} (\mathrm{GvE}) \\ \sim \sim K \end{array}\right.$	$\underset{\sim}{\sim} \underset{\sim}{\sim}$	$\underset{\sim}{\sim(\sim K \bullet} \underset{\sim}{\sim}$	$\begin{gathered} \{(\mathrm{GvE}) \supset \sim \mathrm{K}\} \\ \supset \sim(\sim K \bullet \sim E) \end{gathered}$
T	T	T	F	F	T	F	F	T	
1	T	F	F	T	T	T	F	T	
T	F	T	F	F	T	F	F	T	
1	F	F	F	T	T	T	F	T	
F	T	T	T	F	T	F	F	T	
F		F	T	T	T	T	T	F	
F	F		T	F	F	T	F	T	
	F		T	T	F	T	T	F	

$\{(\mathrm{G} \vee \mathrm{E}) \supset \sim \mathrm{K}\} \supset \sim(\sim \mathrm{K} \bullet \sim \mathrm{E})$								
EG		-	$\sim K$	GvE	(GvE)	$\sim K$	$\sim(\sim K \cdot$	\{(GvE) ${ }^{\text {a }}$ K\}
EG		\sim	$\sim K$	GVE	J~K	\sim E	$\sim \mathrm{E})$	J~(~K•~E)
T T	T	F	F	T	F	F	T	T
TT	F	F	T	T	T	F	T	T
T F	T	F	F	T	F	F	T	T
T F	F	F	T	T	T	F	T	T
F T	T	T	F	T	F	F	T	T
F T	F	T	T	T	T	T	F	F
F F	T	T	F	F	T	F	T	T
F F	F	T	T	F	T	T	F	F

What are truth tables doing exactly?

What are truth tables doing exactly?

We have a compound statement, composed of atomic statements.

What are truth tables doing exactly?

We have a compound statement, composed of atomic statements.

We don't know of any of the atomic statements whether it is true or false.

What are truth tables doing exactly?

We have a compound statement, composed of atomic statements.

We don't know of any of the atomic statements whether it is true or false.

So we list off all the possibilities

What are truth tables doing exactly?

We have a compound statement, composed of atomic statements.

We don't know of any of the atomic

$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathbf{D}$						
C	D	$\sim \mathrm{C}$	$\sim \mathrm{D}$	$\sim \mathrm{C} \equiv \mathrm{D}$	$\sim(\sim \mathrm{C} \equiv \mathrm{D})$	$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathrm{D}$
T	T	F	F	F	T	F
T	F	F	T	T	F	T
F	T	T	F	T	F	T
F	F	T	T	F	T	T

So we list off all the possibilities
Truth table shows, for each possibility, whether the compound statement(s) is/are true or false.

$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathbf{D}$						
C	D	$\sim \mathrm{C}$	$\sim \mathrm{D}$	$\sim \mathrm{C} \equiv \mathrm{D}$	$\sim(\sim \mathrm{C} \equiv \mathrm{D})$	
T	T	F	F	F	T	
T	F	F	T	T	$\mathrm{C} \equiv \mathrm{D}) \supset \sim \mathrm{D}$	
F	T	T	F	T	F	
F	F	T	T	F	T	

$C=$ Cats eat spiders $\quad D=$ Dogs are robots

$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathbf{D}$					
C					

$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathrm{D}$						
C	D	$\sim \mathrm{C}$	$\sim \mathrm{D}$	$\sim \mathrm{C} \equiv \mathrm{D}$	$\sim(\sim \mathrm{C} \equiv \mathrm{D})$	$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathrm{D}$
T	T	F	F	F	T	F
T	F	F	T	T	F	T
F	T	T	F	T	F	T
F	F	T	T	F	T	T

$C=$ Cats eat spiders $D=$ Dogs are robots
Row two represents the alternate universe in which Cats eat spiders and dogs aren't robots. In that universe, the compound statement is True.

$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathbf{D}$						
C	D	$\sim \mathrm{C}$	$\sim \mathrm{D}$	$\sim \mathrm{C} \equiv \mathrm{D}$	$\sim(\sim \mathrm{C} \equiv \mathrm{D})$	
T	T	F	F	F	T	
T	F	F	T	T	$\mathrm{C} \equiv \mathrm{D}) \supset \sim \mathrm{D}$	
F	T	T	F	T	F	
F	F	T	T	F	T	

$C=$ Cats eat spiders $D=$ Dogs are robots
Row three represents the alternate universe in which Cats don't eat spiders and dogs are robots. In that universe, the compound statement is True.

$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathbf{D}$						
C	D	$\sim \mathrm{C}$	$\sim \mathrm{D}$	$\sim \mathrm{C} \equiv \mathrm{D}$	$\sim(\sim \mathrm{C} \equiv \mathrm{D})$	
T	T	F	F	F	T	
T	F	F	T	T	$\mathrm{C} \equiv \mathrm{D}) \supset \sim \mathrm{D}$	
F	T	T	F	T	F	
F	F	T	T	F	T	

$C=$ Cats eat spiders $D=$ Dogs are robots
Now we can know things like: any universe in which dogs aren't robots is a universe in which the compound statement is True.

$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathrm{D}$						
C	D	$\sim \mathrm{C}$	$\sim \mathrm{D}$	$\sim \mathrm{C} \equiv \mathrm{D}$	$\sim(\sim \mathrm{C} \equiv \mathrm{D})$	$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathrm{D}$
T	T	F	F	F	T	F
T	F	F	T	T	F	T
F	T	T	F	T	F	T
F	F	T	T	F	T	T

$C=$ Cats eat spiders $D=$ Dogs are robots
It turns out that the real universe is one of the possible alternate universes. In fact, on this truth table, it is represented on Row 2, since in fact cats do eat spiders, and dogs aren't robots.

$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathbf{D}$						
C	D	$\sim \mathrm{C}$	$\sim \mathrm{D}$	$\sim \mathrm{C} \equiv \mathrm{D}$	$\sim(\sim \mathrm{C} \equiv \mathrm{D})$	
T	T	F	F	F	T	
T	F	F	T	T	F	
F	T	T	F	T	$\mathrm{D}) \supset \sim \mathrm{D}$	
F	F	T	T	F	T	

$C=$ Cats eat spiders $D=$ Dogs are robots
Row four represents the alternate universe in which Cats don't eat spiders and dogs aren't robots. In that universe, the compound statement is True.

$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathbf{D}$						
C	D	$\sim \mathrm{C}$	$\sim \mathrm{D}$	$\sim \mathrm{C} \equiv \mathrm{D}$	$\sim(\sim \mathrm{C} \equiv \mathrm{D})$	$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathrm{D}$
T	T	F	F	F	T	F
T	F	F	T	T	F	T
F	T	T	F	T	F	T
F	F	T	T	F	T	T

$C=$ Cats eat spiders $\quad D=$ Dogs are robots
Now we can know things like: any universe in which dogs aren't robots is a universe in which the compound statement is True.

$\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathrm{D}$					
C D $\sim \mathrm{C}$ $\sim \mathrm{D}$ $\sim \mathrm{C} \equiv \mathrm{D}$ $\sim(\sim \mathrm{C} \equiv \mathrm{D})$ T T $\sim(\sim \mathrm{C} \equiv \mathrm{D}) \supset \sim \mathrm{D}$ T F F F T T T F F T F T T F T F F F T T F T					

$C=$ Cats eat spiders $D=$ Dogs are robots
It turns out that the real universe is one of the possible alternate universes. In fact, on this truth table, it is represented on Row 2, since in fact cats do eat spiders, and dogs aren't robots.

Categorizing statements

Categorizing statements

It is often useful to know the range of truth values that a statement can have.

Categorizing statements

It is often useful to know the range of truth values that a statement can have.

Statements that are true in all alternate universes are tautologies.

Categorizing statements

It is often useful to know the range of truth values that a statement can have.

Statements that are true in all alternate universes are tautologies.
Statements that are false in all alternate universes are contradictions.

Categorizing statements

It is often useful to know the range of truth values that a statement can have.

Statements that are true in all alternate

Categorizing statements

By definition, atomic statements are contingencies: they can be either true or false. This does not mean that all compound statements are contingencies, though. universes are tautologies.

Statements that are false in all alternate universes are contradictions.

Statements that are true in some universes and false in others are contingencies.

Categorizing statements

By definition, atomic statements are contingencies: they can be either true or false. This does not mean that all compound statements are contingencies, though.

$$
P \vee \sim P
$$

To determine whether a statement is a tautology, contradiction, or contingency, do a truth table for that statement, and look at its truth column:
if it has only Ts, then it is a tautology
if it has only Fs, then it is a contradiction
if it has both Ts and Fs, then it is a
contingency
$\mathrm{P} \vee \sim \mathrm{P}$

P	$\sim \mathrm{P}$	$\mathrm{P} v \sim \mathrm{P}$
T	F	T
F	T	T

B • ~B

Categorizing statements

By definition, atomic statements are contingencies: they can be either true or false. This does not mean that all compound statements are contingencies, though.

To determine whether a statement is a tautology, contradiction, or contingency, do a truth table for that statement, and look at its truth column:
if it has only Ts, then it is a tautology
if it has only Fs, then it is a contradiction
if it has both Ts and Fs, then it is a contingency

$B \bullet \sim B$

B	$\sim \mathrm{B}$	$\mathrm{B} \bullet \sim \mathrm{B}$
T		
F		

B • ~B

B	$\sim \mathrm{B}$	$\mathrm{B} \bullet \sim \mathrm{B}$
T	F	F
F	T	F

$R \bullet \sim(S \vee R)$

R	S	$S \vee R$	$\sim(S \vee R)$	$R \bullet \sim(S \vee R)$

$R \bullet \sim(S \vee R)$					
R S $S \vee R$ $\sim(S \vee R)$ $R \bullet \sim(S \vee R)$ T T T F F T F F					

$R \bullet \sim(S \vee R)$				
R S $S \vee R$ $\sim(S \vee R)$ $R \bullet \sim(S \vee R)$ T T T T F T F T T F F F				

$R \bullet \sim(S \vee R)$					
R S $S \vee R$ $\sim(S \vee R)$ $R \bullet \sim(S \vee R)$ T T T F T F T F F T T F F F F T					

Equivalence, consistency,
Equivalence, consistency, implication, \& validity

1. Relations between two statements: equivalence, consistency, implication

Equivalence, consistency, implication, \& validity

1. Relations between two statements: equivalence, consistency, implication
2. Relations between three or more statements: equivalence, consistency, joint implication

Equivalence, consistency, implication, \& validity

1. Relations between two statements: equivalence, consistency, implication
2. Relations between three or more statements: equivalence, consistency, joint implication
3. Argument validity

Relations between two statements

Relations between two statements

Just as it is often helpful to know whether an individual statement is a tautology,
contradiction, or contingency, it is also often helpful to know what relations hold between two statements.

Equivalence

Two statements are equivalent iff they have

Equivalence

Two statements are equivalent iff they have identical truth columns.

No matter what universe you are in, the statements will have the same truth value.

Equivalence

Consistency
Two statements are equivalent iff they have identical truth columns.

No matter what universe you are in, the statements will have the same truth value.

To test for equivalence, construct a joint truth table for the two statements and compare their truth columns. If the columns are identical, then the statements are equivalent. If they are not identical, then they are not equivalent.

Consistency

Two statements are consistent iff it is possible for them to both be true at the same time.

There is some universe in which the statements are both True.

Consistency

Two statements are consistent iff it is possible for them to both be true at the same time.

Implication

Statement φ implies statement ψ iff:
if φ is true, then ψ must be true.
There is some universe in which the statements are both True.

To test for consistency, do a joint truth table for the two statements. If there is a row (one or more) on which both statements are T, then they are consistent. If there is no row in which both are T, then they are inconsistent.

Implication

Statement φ implies statement ψ iff: if φ is true, then ψ must be true.

In any universe where φ is true, ψ will also be true.

In any universe where ψ is false, φ will also be false.

Implication

Statement φ implies statement ψ iff: if φ is true, then ψ must be true.

To see whether φ implies ψ, do a joint truth table for φ and ψ, and look for a row on which φ is T and ψ is F (a counter-example row). If there IS a counter-example row, then then φ does NOT imply ψ; if there is NOT a counterexample row, then φ DOES imply ψ.
I. $\sim(\mathrm{P} \bullet \mathrm{Q})$

P	Q	$\sim \mathrm{P}$	$\sim \mathrm{Q}$	$\mathrm{P} \bullet \mathrm{Q}$	$\sim(\mathrm{P} \bullet \mathrm{Q})$	$\sim \mathrm{P} \bullet \sim \mathrm{Q}$
T	T	F	F	T	F	F
T	F	F	T	F	T	F
F	T	T	F	F	T	F
F	F	T	T	F	T	T

1. $\sim(\mathrm{P} \bullet \mathrm{Q})$

P	Q	$\sim \mathrm{P}$	$\sim \mathrm{Q}$	$\mathrm{P} \bullet \mathrm{Q}$	$\sim(\mathrm{P} \bullet \mathrm{Q})$	$\sim \mathrm{P} \bullet \sim \mathrm{Q}$
T	T	F	F	T	F	F
T	F	F	T	F	T	F
F	T	T	F	F	T	F
F	F	T	T	F	T	T

Are (1) and (2) equivalent?
I. $\sim(P \cdot Q) \quad$ 2. $\sim P \bullet \sim Q$

P	Q	$\sim \mathrm{P}$	$\sim \mathrm{Q}$	$\mathrm{P} \bullet \mathrm{Q}$	$\sim(\mathrm{P} \bullet \mathrm{Q})$	$\sim \mathrm{P} \bullet \sim \mathrm{Q}$
T	T	F	F	T	F	F
T	F	F	T	F	T	F
F	T	T	F	F	T	F
F	F	T	T	F	T	T

Are (1) and (2) equivalent? No
I. $\sim(\mathrm{P} \bullet \mathrm{Q})$

P	Q	$\sim \mathrm{P}$	$\sim \mathrm{Q}$	$\mathrm{P} \bullet \mathrm{Q}$	$\sim(\mathrm{P} \bullet \mathrm{Q})$	$\sim \mathrm{P} \bullet \sim \mathrm{Q}$
T	T	F	F	T	F	F
T	F	F	T	F	T	F
F	T	T	F	F	T	F
F	F	T	T	F	T	T

Are (1) and (2) consistent?
I. $\sim(\mathrm{P} \bullet \mathrm{Q})$

P	Q	$\sim \mathrm{P}$	$\sim \mathrm{Q}$	$\mathrm{P} \bullet \mathrm{Q}$	$\sim(\mathrm{P} \bullet \mathrm{Q})$	$\sim \mathrm{P} \bullet \sim \mathrm{Q}$
T	T	F	F	T	F	F
T	F	F	T	F	T	F
F	T	T	F	F	T	F
F	F	T	T	F	T	T

Are (1) and (2) consistent? Yes
I. $\sim(\mathrm{P} \bullet \mathrm{Q})$

P	Q	$\sim \mathrm{P}$	$\sim \mathrm{Q}$	$\mathrm{P} \bullet \mathrm{Q}$	$\sim(\mathrm{P} \bullet \mathrm{Q})$	$\sim \mathrm{P} \bullet \sim \mathrm{Q}$
T	T	F	F	T	F	F
T	F	F	T	F	T	F
F	T	T	F	F	T	F
F	F	T	T	F	T	T

Does (1) imply (2)? No
I. $\sim(\mathrm{P} \bullet \mathrm{Q})$

P	Q	$\sim \mathrm{P}$	$\sim \mathrm{Q}$	$\mathrm{P} \bullet \mathrm{Q}$	$\sim(\mathrm{P} \bullet \mathrm{Q})$	$\sim \mathrm{P} \bullet \sim \mathrm{Q}$
T	T	F	F	T	F	F
T	F	F	T	F	T	F
F	T	T	F	F	T	F
F	F	T	T	F	T	T

Does (2) imply (1)?
I. $\sim(\mathrm{P} \bullet \mathrm{Q})$

P	Q	$\sim \mathrm{P}$	$\sim \mathrm{Q}$	$\mathrm{P} \bullet \mathrm{Q}$	$\sim(\mathrm{P} \bullet \mathrm{Q})$	$\sim \mathrm{P} \bullet \sim \mathrm{Q}$
T	T	F	F	T	F	F
T	F	F	T	F	T	F
F	T	T	F	F	T	F
F	F	T	T	F	T	T

Does (2) imply (1)? Yes

$$
\text { I. } A \equiv B \quad \text { 2. }(A \supset B) \bullet(B \supset A)
$$

1. $A \equiv B$				2. $(A \supset B) \bullet(B \supset A)$
A B $A \supset B$ $B \supset A$ $A \equiv B$ $(A \supset B) \bullet(B \supset A)$ T T T T T T T F F T F F F T T F F F F F T T T T				

I. $A \equiv B$

2. $(A \supset B) \bullet(B \supset A)$					
A	B	$A \supset B$	$B \supset A$	$A \equiv B$	$(A \supset B) \bullet(B \supset A)$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	T	F	F	F
F	F	T	T	T	T

Are (1) and (2) equivalent?
I. $A \equiv B$

	2. $(A \supset B) \bullet(B \supset A)$				
A	B	$A \supset B$	$B \supset A$	$A \equiv B$	$(A \supset B) \bullet(B \supset A)$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	T	F	F	F
F	F	T	T	T	T

Are (I) and (2) equivalent? Yes

I. $A \equiv B$					
2. $(A \supset B) \bullet(B \supset A)$ A B $A \supset B$ $B \supset A$ $A \equiv B$ $(A \supset B) \bullet(B \supset A)$ T T T T T T T F F T F F F T T F F F F F T T T T					

Are (1) and (2) consistent?
I. $A \equiv B$

2. $(A \supset B) \bullet(B \supset A)$					
A	B	$A \supset B$	$B \supset A$	$A \equiv B$	$(A \supset B) \bullet(B \supset A)$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	T	F	F	F
F	F	T	T	T	T

Are (1) and (2) consistent? Yes
I. $A \equiv B$

	2. $(A \supset B) \bullet(B \supset A)$				
A	B	$A \supset B$	$B \supset A$	$A \equiv B$	$(A \supset B) \bullet(B \supset A)$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	T	F	F	F
F	F	T	T	T	T

Does (1) imply (2)?
I. $A \equiv B$

2. $(A \supset B) \bullet(B \supset A)$					
A	B	$A \supset B$	$B \supset A$	$A \equiv B$	$(A \supset B) \bullet(B \supset A)$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	T	F	F	F
F	F	T	T	T	T

Does (1) imply (2)? Yes

I. $A \equiv B$			2。 $(A \supset B) \bullet(B \supset A)$	
A B $A \supset B$ $B \supset A$ $A \equiv B$ $(A \supset B) \bullet(B \supset A)$ T T T T T T T F F T F F F T T F F F F F T T T T				

Does (2) imply (1)?
I. $A \equiv B$

	2. $(A \supset B) \bullet(B \supset A)$				
A	B	$A \supset B$	$B \supset A$	$A \equiv B$	$(A \supset B) \bullet(B \supset A)$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	T	F	F	F
F	F	T	T	T	T

Does (2) imply (1)? Yes

$$
\text { 1. }(M \supset N) \bullet \sim N \quad \text { 2. } \sim M
$$

$$
\text { I. }(M \supset N) \bullet \sim N \quad \text { 2. } \sim M
$$

M	N	$\mathrm{M} \supset \mathrm{N}$	$\sim \mathrm{N}$	$(\mathrm{M} \supset \mathrm{N}) \bullet \sim \mathrm{N}$	$\sim \mathrm{M}$
T	T	T	F	F	F
T	F	F	T	F	F
F	T	T	F	F	T
F	F	T	T	T	T

I. $(M \supset N) \bullet \sim N$

M	N	$\mathrm{M} \supset \mathrm{N}$	$\sim \mathrm{N}$	$(\mathrm{M} \supset \mathrm{N}) \bullet \sim N$	$\sim \mathrm{M}$
T	T	T	F	F	F
T	F	F	T	F	F
F	T	T	F	F	T
F	F	T	T	T	T

Are (1) and (2) equivalent?

$$
\text { I. }(M \supset N) \bullet \sim N \quad \text { 2. } \sim M
$$

M	N	$\mathrm{M} \supset \mathrm{N}$	$\sim \mathrm{N}$	$(\mathrm{M} \supset \mathrm{N}) \bullet \sim \mathrm{N}$	$\sim \mathrm{M}$
T	T	T	F	F	F
T	F	F	T	F	F
F	T	T	F	F	T
F	F	T	T	T	T

Are (1) and (2) equivalent? No
I. $(\mathrm{M} \supset \mathrm{N}) \bullet \sim N$

M	N	$\mathrm{M} \supset \mathrm{N}$	$\sim \mathrm{N}$	$(\mathrm{M} \supset \mathrm{N}) \bullet \sim \mathrm{N}$	$\sim \mathrm{M}$
T	T	T	F	F	F
T	F	F	T	F	F
F	T	T	F	F	T
F	F	T	T	T	T

Are (1) and (2) consistent?
I. $(M \supset N) \bullet \sim N \quad$ 2. $\sim M$

M	N	$\mathrm{M} \supset \mathrm{N}$	$\sim \mathrm{N}$	$(\mathrm{M} \supset \mathrm{N}) \bullet \sim \mathrm{N}$	$\sim \mathrm{M}$
T	T	T	F	F	F
T	F	F	T	F	F
F	T	T	F	F	T
F	F	T	T	T	T

Are (1) and (2) consistent? Yes
I. $(\mathrm{M} \supset \mathrm{N}) \bullet \sim N$

M	N	$\mathrm{M} \supset \mathrm{N}$	$\sim \mathrm{N}$	$(\mathrm{M} \supset \mathrm{N}) \bullet \sim \mathrm{N}$	$\sim \mathrm{M}$
T	T	T	F	F	F
T	F	F	T	F	F
F	T	T	F	F	T
F	F	T	T	T	T

Does (1) imply (2)?

$$
\text { 1. }(M \supset N) \bullet \sim N \quad \text { 2. } \sim M
$$

M	N	$\mathrm{M} \supset \mathrm{N}$	$\sim \mathrm{N}$	$(\mathrm{M} \supset \mathrm{N}) \bullet \sim \mathrm{N}$	$\sim \mathrm{M}$
T	T	T	F	F	F
T	F	F	T	F	F
F	T	T	F	F	T
F	F	T	T	T	T

Does (1) imply (2)? Yes
I. $(\mathrm{M} \supset \mathrm{N}) \bullet \sim N$

M	N	$\mathrm{M} \supset \mathrm{N}$	$\sim \mathrm{N}$	$(\mathrm{M} \supset \mathrm{N}) \bullet \sim \mathrm{N}$	$\sim \mathrm{M}$
T	T	T	F	F	F
T	F	F	T	F	F
F	T	T	F	F	T
F	F	T	T	T	T

Does (2) imply (1)?

$$
\text { 1. }(M \supset N) \bullet \sim N \quad \text { 2. } \sim M
$$

M	N	$\mathrm{M} \supset \mathrm{N}$	$\sim \mathrm{N}$	$(\mathrm{M} \supset \mathrm{N}) \bullet \sim \mathrm{N}$	$\sim \mathrm{M}$
T	T	T	F	F	F
T	F	F	T	F	F
F	T	T	F	F	T
F	F	T	T	T	T

Does (2) imply (1)? No

Relations between three or more statements

Equivalence

A set of statements are equivalent if they all have identical truth columns

Consistency

A set of statements are consistent if there is at least one row on which they are all T .

Joint Implication
A set of statements ($\varphi \cdot \cdot 1 \varphi$) јоintly imply statement ψ iff: if ($\varphi \ldots \varphi$) are all true, then ψ must be true.

Joint Implication

A set of statements ($\varphi \cdot-1 \varphi$) jointly imply statement ψ iff: if ($\varphi \ldots \varphi$) are all ${ }_{\text {true, }}$ then ψ must be true.
To test whether statements ($\varphi \ldots \unlhd$) jqintly imply statement ψ, do a joint truth table with all statements, and look for a row in which ALL of ($\varphi \ldots \varphi$) are T and ψ is1F (a ЋE row). If there IS such a row, then ($\varphi \ldots \varphi$) do NOT jointly imply ψ; if there is NOT such a row, then
$\left(\varphi_{1} \ldots \varphi_{n}\right)$ DO jointly imply ψ.
I. G כ H
2. ~H $\supset \sim G$
3. $\sim \mathrm{G} \vee \mathrm{H}$
I. G $\supset \mathrm{H}$
2. $\sim \mathrm{H} \supset \sim \mathrm{G}$
3. $\sim \mathrm{G} \vee \mathrm{H}$

G	H	$\sim \mathrm{G}$	$\sim \mathrm{H}$	$\mathrm{G} \supset \mathrm{H}$	$\sim \mathrm{H} \supset \sim \mathrm{G}$	$\sim \mathrm{G} \mathbf{v} \mathrm{H}$
T	T	F	F	T	T	T
T	F	F	T	F	F	F
F	T	T	F	T	T	T
F	F	T	T	T	T	T

I. G כ H

2. ~H $\supset \sim G$
3. $\sim \mathrm{G} \vee \mathrm{H}$ I 2

G	H	$\sim \mathrm{G}$	$\sim \mathrm{H}$	$\mathrm{G} \supset \mathrm{H}$	$\sim \mathrm{H} \supset \sim \mathrm{G}$	$\sim \mathrm{G}$ v H
T	T	F	F	T	T	T
T	F	F	T	F	F	F
F	T	T	F	T	T	T
F	F	T	T	T	T	T

Are I-3 equivalent?
I. G כ H
2. ~H $\supset \sim G$
3. $\sim \mathrm{G} \vee \mathrm{H}$ I 2

G	H	$\sim \mathrm{G}$	$\sim \mathrm{H}$	$\mathrm{G} \supset \mathrm{H}$	$\sim \mathrm{H} \supset \sim \mathrm{G}$	$\sim \mathrm{G} v \mathrm{H}$
T	T	F	F	T	T	T
T	F	F	T	F	F	F
F	T	T	F	T	T	T
F	F	T	T	T	T	T

I. G $\supset \mathrm{H}$
2. ~H $\supset \sim G$
3. $\sim \mathrm{G} \vee \mathrm{H} \quad 1 \quad 3$

G	H	$\sim \mathrm{G}$	$\sim \mathrm{H}$	$\mathrm{G} \supset \mathrm{H}$	$\sim \mathrm{H} \supset \sim \mathrm{G}$	$\sim \mathrm{G} v \mathrm{H}$
T	T	F	F	T	T	T
T	F	F	T	F	F	F
F	T	T	F	T	T	T
F	F	T	T	T	T	T

Are I-3 equivalent? Yes
I. $\mathrm{G} \supset \mathrm{H}$
2. $\sim \mathrm{H} \supset \sim \mathrm{G}$
3. $\sim \mathrm{G} \vee \mathrm{H}$

G	H	$\sim \mathrm{G}$	$\sim \mathrm{H}$	$\mathrm{G} \supset \mathrm{H}$	$\sim \mathrm{H} \supset \sim \mathrm{G}$
T	T	F	F	$\mathrm{G}, ~ \mathrm{~T}$	H
T	F	F	T	F	T
F	T	T	F	T	T
F	F	T	T	T	T

Are I-3 consistent?
I. G D H
2. ~H $\supset \sim G$
3. $\sim \mathrm{G} v \mathrm{H}$ I 2

G	H	$\sim \mathrm{G}$	$\sim \mathrm{H}$	$\mathrm{G} \supset \mathrm{H}$	$\sim \mathrm{H} \supset \sim \mathrm{G}$	$\sim \mathrm{G} v \mathrm{H}$
T	T	F	F	T	T	T
T	F	F	T	F	F	F
F	T	T	F	T	T	T
F	F	T	T	T	T	T

Are l-3 consistent? Yes
I. $\mathrm{G} \supset \mathrm{H}$
2. $\sim \mathrm{H} \supset \sim \mathrm{G}$
3. $\sim \mathrm{G} \vee \mathrm{H}$

G	H	$\sim \mathrm{G}$	$\sim \mathrm{H}$	$\mathrm{G} \supset \mathrm{H}$	$\sim \mathrm{H} \supset \sim \mathrm{G}$	$\sim \mathrm{G} v \mathrm{H}$
T	T	F	F	T	T	T
T	F	F	T	F	F	F
F	T	T	F	T	T	T
F	F	T	T	T	T	T

Do I-2 jointly imply 3?
I. $\mathrm{G} \supset \mathrm{H}$
2. $\sim \mathrm{H} \supset \sim \mathrm{G}$
3. $\sim \mathrm{G} \vee \mathrm{H}$

G	H	$\sim \mathrm{G}$	$\sim \mathrm{H}$	$\mathrm{G} \supset \mathrm{H}$	$\sim \mathrm{H} \supset \sim \mathrm{G}$	$\sim \mathrm{G} v \mathrm{H}$
T	T	F	F	T	T	T
T	F	F	T	F	F	F
F	T	T	F	T	T	T
F	F	T	T	T	T	T

Do I-2 jointly imply 3? Yes
I. L
2. L つ K
3. ~K
I. L
2. L כ K
3. ~K

K	L	$\mathrm{L} \supset \mathrm{K}$	$\sim \mathrm{K}$
T	T	T	F
T	F	T	F
F	T	F	T
F	F	T	T

I. L
2. L כ K
3. ~K

K	L	$\mathrm{L} \supset \mathrm{K}$	$\sim \mathrm{K}$
T	T	T	F
T	F	T	F
F	T	F	T
F	F	T	T

I. L
2. L כ K
3. ~K

I	2		3
K	L	$\mathrm{~L} \supset \mathrm{~K}$	$\sim \mathrm{~K}$
T	T	T	F
T	F	T	F
F	T	F	T
F	F	T	T

Are I-3 equivalent?
I. L
2. L 〕 K
3. $\sim K$

I	2		3
K	L	$\mathrm{~L} \supset \mathrm{~K}$	$\sim \mathrm{~K}$
T	T	T	F
T	F	T	F
F	T	F	T
F	F	T	T

Are I-3 equivalent? No
I. L
2. L J K
3. ~K

I	2	3	
K	L	$\mathrm{~L} \supset \mathrm{~K}$	$\sim \mathrm{~K}$
T	T	T	F
T	F	T	F
F	T	F	T
F	F	T	T

Are I-3 consistent?
I. L
2. L つ K
3. $\sim \mathrm{K}$

I	2		3
K	L	$\mathrm{~L} \supset \mathrm{~K}$	$\sim \mathrm{~K}$
T	T	T	F
T	F	T	F
F	T	F	T
F	F	T	T

Are I-3 consistent? No
I. L
2. L כ K
3. $\sim K$

I	2	3	
K	L	$\mathrm{~L} \supset \mathrm{~K}$	$\sim \mathrm{~K}$
T	T	T	F
T	F	T	F
F	T	F	T
F	F	T	T

Do I-2 jointly imply 3?
I. L
2. L כ K
3. $\sim K$

K	L	L $\supset \mathrm{K}$	$\sim \mathrm{K}$
T	T	T	F
T	F	T	F
F	T	F	T
F	F	T	T

Do I-2 jointly imply 3? No
I. L
2. L כ K
3. ~K

I	2	3	
K	L	$\mathrm{~L} \supset \mathrm{~J}$	$\sim \mathrm{~K}$
T	T	T	F
T	F	T	F
F	T	F	T
F	F	T	T

Do $\mathbf{I \& 3}$ jointly imply $\mathbf{2 ?}$

I. L

2. L כ K
3. $\sim K$

I		2	3
K	L	L כ K	$\sim \mathrm{K}$
T	T	T	F
T	F	T	F
F	T	F	T
F	F	T	T

Do $\mathbf{2 \& 3} \mathbf{3}$ jointly imply I?
I. L
2. L כ K
3. $\sim \mathrm{K}$

I	2		3
K	L	$\mathrm{~L} \supset \mathrm{~J}$	$\sim \mathrm{~K}$
T	T	T	F
T	F	T	F
F	T	F	T
F	F	T	T

Do $\mathbf{2 \& 3}$ jointly imply I? No
I. A D B
2. $C \supset B$
3. A v C
4. B
I. A $\supset \mathrm{B}$
2. $C \supset B$
3. A v C
4. B

A	B	C	$\mathrm{A} \supset \mathrm{B}$	$\mathrm{C} \supset \mathrm{B}$	$\mathrm{A} v \mathrm{C}$
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	F	F	T
T	F	F	F	T	T
F	T	T	T	T	T
F	T	F	T	T	F
F	F	T	T	F	T
F	F	F	T	T	F

I. A $\supset \mathrm{B}$
2. $C \supset B$
3. A v C
4. B

4			1	2	3
A	B	C	$\mathrm{A} \supset \mathrm{B}$	$\mathrm{C} \supset \mathrm{B}$	A v C
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	F	F	T
T	F	F	F	T	T
F	T	T	T	T	T
F	T	F	T	T	F
	F	T	T	F	T
				T	F

I. A D B
2. $C \supset B$
3. A v C
4. B

4			1	2	3
A	B	C	$A \supset B$	$C \supset B$	A v C
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	F	F	T
T	F	F	F	T	T
F	T	T	T	T	T
F	T	F	T	T	F
	F		T	F	T
			-nt	T	F

I. A $\supset B$
2. $C \supset B$
3. A v C
4. B

I. A D B
2. $C \supset B$
3. A $\vee \mathrm{C}$
4. B

c	1			2	
A	B	C	$\mathrm{A} \supset \mathrm{B}$	$\mathrm{C} \supset \mathrm{B}$	$\mathrm{A} v \mathrm{C}$
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	F	F	T
T	F	F	F	T	T
F	T	T	T	T	T
F	T	F	T	T	F
F	F	T	T	F	T
F	F	F	T	T	F

I. A D B
2. $C \supset B$
3. A v C
4. B

4			1	2	3
A	B	C	A $\supset \mathrm{B}$	$C>B$	A v C
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	F	F	T
T	F	F	F	T	T
F	T	T	T	T	T
F	T	F	T	T	F
F	F	T	T	F	T
F		F	T	T	F

I. A $\supset \mathrm{B}$
2. $C \supset B$
3. A v C
4. B

	4		1	2	3
A	B	C	A $\supset \mathrm{B}$	$C \supset B$	A v C
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	F	F	T
T	F	F	F	T	T
F	T	T	T	T	T
F	T	F	T	T	F
			$\text { imply }^{\top}$	F	T
				T	F

I. A $\supset B$
2. $C \supset B$
3. A v C
4. B
I. A \supset B
2. $C \supset B$
3. A v C
4. B

4			1	2	3
A	B	C	$A \supset B$	$C>B$	A v C
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	F	F	T
T	F	F	F	T	T
F	T	T	T	T	T
F	T	F	T	T	F
$\begin{gathered} F_{2} \\ { }^{2}, \end{gathered}$	F	T	${ }^{\text {nty }} \mathrm{y} \text { Tim }$	$\frac{F}{4} \frac{y^{3}}{}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{~F} \end{aligned}$

I. P V C
2. ~C
$\therefore 3$. P
I. A $\supset \mathrm{B}$
2. $C \supset B$
3. A v C
4. B

4			1	2	3
A	B	C	$\mathrm{A} \supset \mathrm{B}$	$\mathrm{C} \supset \mathrm{B}$	A v C
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	F	F	T
T	F	F	F	T	T
F	T	T	T	T	T
F	T	F	T	T	F
					T
					F

4			1	2	3
A	B	C	A \supset B	$C \supset B$	A v C
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	F	F	T
T	F	F	F	T	T
F	T	T	T	T	T
F	T	F	T	T	F
			${ }_{\text {ctiy }}{ }^{\top}$	${ }^{F}{ }^{5}$	T

An argument is deductively valid iff the premises jointly imply the conclusion.

Do

Argument validity

 conclusion.
I. P v C
2. $\sim \mathrm{C}$
\therefore 3. P

C	P	$\sim \mathrm{C}$	$\mathrm{P} v \mathrm{C}$
T	T	F	T
T	F	F	T
F	T	T	T
F	F	T	F

This pizza is either pepperoni or cheese.
It is not cheese. Therefore, it is pepperoni.

Argument is valid

			Trees are green. Lead is heavy.
D	G	L	is dead.
T	T	T	Argument is invalid
T	T	F	
T	F	T	
T	F	F	
F	T	T	
F	T	F	
F	F	T	
F	F	F	

$$
\begin{aligned}
& \text { I. } D \supset R \\
& \text { 2. } D \\
& \therefore \text { 3. } R
\end{aligned}
$$

```
I.D Ј R
    2. D
    \therefore3.R
```

If ducks sink, then ducks are made of small rocks. Ducks do sink. Therefore, ducks are made of small rocks.
I. $\mathrm{D} \supset \mathrm{R}$
2. D
\therefore 3. R

D	R	$\mathrm{D} \supset \mathrm{R}$
T	T	T
T	F	F
F	T	T
F	F	T

If ducks sink, then ducks are made of small rocks. Ducks do sink. Therefore, ducks are made of small rocks.
I. $\mathrm{D} \supset \mathrm{R}$
2. D
\therefore 3. R

D	R	$\mathrm{D} \supset \mathrm{R}$
T	T	T
T	F	F
F	T	T
F	F	T

If ducks sink, then ducks are made of small rocks. Ducks do sink. Therefore, ducks are made of small rocks.

Argument is valid
I. ~A $\supset \mathrm{K}$
2. $\sim K \equiv \sim A$
3. $\sim \mathrm{K}$
\therefore 4. J

	$\begin{aligned} & 1 . \sim \\ & \text { 2. } \\ & \text { 3. } \\ & \therefore \underset{\sim}{\sim} \end{aligned}$	A ${ }_{\text {A }}^{\text {K }}$	$\underset{\sim}{\underset{=}{K}} \underset{\sim}{x}$		Argument is valid	
A	J	K	$\sim A$	~K	$\sim \mathrm{A} \supset \mathrm{K}$	$\sim \mathrm{K} \equiv \sim \mathrm{A}$
T	T	T	F	F	T	T
T	T	F	F	T	T	F
T	F	T	F	F	T	T
T	F	F	F	T	T	F
F	T	T	T	F	T	F
F	T	F	T	T	F	T
F	F	T	T	F	T	F
F	F	F	T	T	F	T

