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1999

Leiter der Arbeit: Prof. Petr Háj́ıček
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One cannot choose but wonder. Will he ever return?
It may be that he swept back into the past, and
fell among the blood–drinking, hairy savages of the
Age of Unpolished Stone; into the abysses of the
Cretaceous Sea; or among the grotesque saurians,
the huge reptilian brutes of the Jurassic times.

H. G. Wells, The Time Machine
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Chapter 1

Introduction

The subject of this essay is the causality violations occuring in an analytical
extension of the Kerr–Newman solution of the Einstein–Maxwell equations.
We investigate the theoretical possibility of such violations and study timelike
curves along which a hypothetical space crew could move in order to travel
backwards in time. Prior to the launch of our essay, a few notes should serve
as an introduction to the topic. First, we give a short historical account of the
field. These remarks are intended to help the reader to gain an idea of where
to locate the subsequent thesis and are far from claiming to be complete.

1.1 Historical Remarks

Albert Einstein published in 1915 several remarkable papers which may serve as
beautiful historical documents. They give account of the last few developments
in the original version of general relativity (GR) after a decade’s struggle until
Einstein was eventually in the position to declare: “With this step [the final
formulation of the field equations], general relativity is finally completed as a
logical structure.”1 The formulation of GR may undoubtedly count as one of
the finest intellectual achievements of the twentieth century. It opened up a
field of research which fascinates to this day.

A few month after the publication of Einstein’s field equations, Karl Schwarz-
schild discovered the first exact solution in his [2]. The solution describes the
spacetime curvature induced by a non–rotating star and is asymptotically New-
tonian. Today, it gains relevance through its illustration of the clearly non–
Euclidean nature of spacetime geometry in case of strong gravity and through
its equivalence with the spacetime geometry of a black hole and of a collapsing
star when appropriately truncated. Shortly thereafter, Reissner and Nordstrøm
found a more general solution of a non–rotating black hole with charge.

In 1924, Eddington was the first to find a coordinate system which was
non–singular at r = 2M . However, it covered only a part of the Schwarschild
geometry. Unfortunately, he seemed not to have recognized the relevance of
his findings. It took another nine years until Lemâıtre did so. Kruskal [3]

1Einstein, A. “Die Feldgleichungen der Gravitation”, Preuss. Akad. Wiss. Berlin, Sitzber.

1915, 844–847, quoted according to [1], p. 433.
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constructed in 1960 a coordinate system which overcame the difficulties with
the incompleteness of former systems, covering both “Schwarzschild patches”
and revealing the structure of the Schwarzschild geometry.

The solution to Einstein’s vacuum field equations describing an uncharged
black hole with an angular momentum was first found by Kerr [4]. Two years
later, Newman and his collaborators discovered the charged generalization in
[5]. They attributed their solution to a rotating ring of mass and charge. The
connection to black holes was found only later, when Hawking and Penrose
revised the traditional view. According to the latter, singularities arising in
the exact solutions of Schwarzschild and Reissner–Nordstrøm were dismissed
as non–physical, due perhaps to the specific assumptions regarding symme-
try properties.2 Penrose [8] concluded that “[...] the existence of a trapped
surface implies—irrespective of symmetry—that singularities necessarily de-
velop.” Hawking [9] showed that the occurrence of—principally observable—
singularities is inevitable if the Einstein equations hold, if matter has normal
properties and if the universe satisfies certain reasonable global conditions. Fur-
thermore, he argued that the singularity would not necessarily constitute a
beginning of the universe.

Later, these theorems were improved and refined. Uniqueness theorems
proven by Israel, Carter, Hawking, Robinson, and Mazur were obtained from
the late sixties to the early eighties. Israel [10, 11] proved that a static, spherical
black hole is described by the Schwarzschild or the Reissner–Nordstrøm solu-
tions. In 1975, Robinson [12] proved that the Kerr spacetimes are the unique
family of black hole solutions of the Einstein vacuum field equations in case of a
non–degenerate event horizon. Penrose [13], p. 69 assumed as early as 1969 that
the asymptotically flat exterior of an event horizon approaches a Kerr–Newman
solution asymptotically with time. In 1982, Mazur [14] showed the uniqueness
of the Kerr–Newman solution with M 2 − a2 − P 2 − Q2 > 0 for a stationary,
rotating, electrovacuum black hole with non–degenerate event horizon.

The foundations on which the uniqueness theorems were based were also
largely developed in this period. One of the most important findings in this
respect is due to Penrose [13] who conjectured that some “cosmic censor” does
not allow for “naked singularities” in gravitational collapses, i.e. no singularities
without an event horizon with respect to asymptotic observers are permitted.
Also, the classical instability of naked singularities was shown by de Felice [15].
Thus, the cosmic censorship concept is accepted today.

Hawking justified some basic assumptions on which the uniqueness theorems
rely in his famed [16]. These assumptions include that stationary black holes
must either be static or axisymmetrical and the event horizon has a spherical
topology. Háj́ıček [17] showed that the outer boundary of an ergosphere must
intersect the event horizon and thus demonstrated the existence of a singularity
or a black hole within any ergosphere.3

2Lifshitz and Khalatnikov in their [6] for instance seem to be rather sceptical about the
physicality of the essential properties of gravitational collapse, a scepticism which condenses
in [7].

3A detailed review concerning uniqueness and censorship issues is given by Carter in [18]
as well as by Mazur in [19].
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It seems natural to study the motion of test particles in order to form an
understanding of the structure of the respective spacetime. Therefore, several
authoritative papers concerned with geodesic motion were published in the
aftermath of the discovery of black hole solutions. They include the works of
de Felice—e.g. [20]—as well as the far–reaching and rather complete account of
test particle trajectories by Stewart and Walker [21]. Bičák and Stuchĺık [22]
analysed latitudinal and radial motion in Kerr spacetime.

Boyer and Lindquist [23] as well as Carter [24, 25] have discovered analytical
extensions for Kerr and Kerr–Newman spacetimes based on the removing of the
source, analogous to what Eddington, Finkelstein, and Kruskal have done to the
Schwarzschild metric. We will briefly discuss this maximal analytical extension
in section 2.1, since it constitutes the basis of our subsequent calculations.
For reasons not to be elaborated here, it is totally irrelevant to the subject of
physical black holes.4

The study of the causal structures of spacetimes has always been one of
the main foci of relativity groups all over the world. Hawking and Penrose [26]
presented a new theorem which largely incorporated and generalized previously
known results regarding the existence of singularities under the exclusion of the
possibility of closed timelike curves. This assumption was supported by Tipler
[27], who argued that it is not possible to manufacture a region containing
closed timelike curves without the formation of naked singularities, provided
normal matter is used in the construction attempt. On the other hand, Carter
[25] proved that in all except the spherically symmetric cases there is nontrivial
causality violation, viz. closed timelike curves. Putting it the other way, this
provides another well–founded justification for assuming the event horizon to
be smooth and perturbations to die out with time.

In the dawn of systematic research of potential causality violating closed
timelike curves, physicists largely studied curves for positive radial coordinates
in spacetimes of naked singularities. As far as we know, Brandon Carter [25]
was the first to clearly recognize that domains of closed timelike curves generally
exist in these spacetimes. In the late seventies, de Felice and Calvani widely
investigated in a series of papers in General Relativity and Gravitation [28,
29, 30] causality violations in Kerr and Kerr–Newman metrics. However, they
concentrated on the case M < a. In this essay, the argument is strictly confined
to black holes with M > a. We have thus established the link to our cause.

1.2 Objectives and Methods

As we have seen in the preceding section, it is today commonly agreed among
relativists that in general, solutions of the Einstein–Maxwell equations or their
respective analytical extensions allow for violations of causality. Such violations
may occur either only in restricted areas of the spacetime or unrestrictedly, i.e.
globally. With “restricted”, we refer to closed timelike ϕ–curves existing in a
domain in the analytical extension of the Kerr–Newman solution into negative
radii, whereas with “global” (or “unrestricted”) causality violations we term

4Cf. [1], p. 882 f.
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closed timelike curves which start in the positive asymptotic region, intersect
the horizons, pass by the singularity and run into negative infinity, where we
change the frame from the advanced to the retarded Eddington–Finkelstein
type of coordinates5 and return then to another patch of positive infinity. If
we identify the latter patch including positive infinity with the one where we
started from, we allow global closed timelike curves. But this would imply that
the spacetime becomes acausal in the sense that the intersection of the causal
past with the causal future of any point on the manifold would include infinitely
many points. However, we shall focus on the local case in what follows.

Even when we talk of “spacetimes”, it is important to point out that “space”
and “time” are not treated on a perfectly equal footing. In every point of any
given metrical manifold obeying the laws of general relativity, we have a local
inertial frame provided by the Minkowski metric. It is in this simple met-
ric, however, that we recognize the inequality between “time” and “space” the
clearest. The differing sign between the diagonal element referring to the time
coordinate and those referring to the spatial coordinates draws a line of dis-
tinction. This line allows the foundation of a causal structure. The distinction
enables the astrophysicist to construct light cones locally and thus to differ-
entiate between timelike and spacelike motion. Without this basic feature, we
would not be in the position to define a chronological orientability of spacetimes
and eventually to introduce a notion of causality, as we shall do in section 2.1.

Our objective will thus be the investigation of the domain of causality vio-
lations dependent upon the parameters of the spacetime and the assessment of
curves spiralling into the past within these domains. We shall always keep the
practicability of such time travel in the back of our mind when discussing our
results.

The methodological approach should be governed by common sense regard-
ing what serves our ends. In the preliminary considerations, it will be natural
to restrict ourselves to analytical calculations. Generally however, the method
chosen in later chapters will be less formal. We will usually begin with quanti-
tative analyses accomplished with the aid of computer algebraic programmes.
Interpreting the results thus obtained, we will try to recognize prevailing trends
in the data output. With a clear notion of what to expect, we nevertheless hope
to achieve some analytical results of the quantities considered. The calculations
performed will be quite straightforward. The obstacles will be found in the in-
terpretations rather than in the results themselves, for some will tend to be
lengthy and will therefore not be easily treated. Wherever this will happen, we
will try to gain some qualitative information on the quantity and its dependence
on the spacetime or trajectory parameters. In cases where even this strategy
brakes down, we will content ourselves with purely numerical analysis.

1.3 Outline of the Thesis

After a short account on the structure of the Kerr–Newman spacetime and
the notion of causality in general relativity, we shall discuss the tetrad and

5See appendix B.
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Newman–Penrose formalisms in chapter 2. The main reason for starting from
the null tetrad of Newman and Penrose is found in the boost invariance of the
curvature in the plane of the degenerate principal null directions as well as its
rotational invariance with respect to the symmetry of the spacetime. We thus
take advantage of the algebraically special directions manifest in the Newman–
Penrose formalism to construct a tetrad frame in advanced Eddington–Finkelstein
type coordinates. The simplicity of the Riemann curvature tensor with respect
to this tetrad frame reveals that feature. The components of the Riemann cur-
vature tensor are later used to derive the tidal forces encountered on the journey
to the domains of potential causality violation and on the time travel itself.

In chapter 3 we shall discuss the itinerary of the journey along timelike
geodesics, starting from asymptotic flatness at positive infinity, along the axis
of symmetry of the singular ring into the realm of causality violation inside
the negative patch of the external Kerr–Newman spacetime. Even though the
spacecraft follows geodesics, energy will be needed in order to complete this part
of the journey. This is necessitated by hills in the effective potential, overlooking
the potential in the asymptotic region. We will calculate this energy and the
elapsed proper time as well as the tidal forces on the axis to which the crew will
be subjected. We will argue that the duration of such a trip does not generally
pose a problem for its completion. Also, the tidal accelerations do not exceed
a relatively harmless threshold, provided that the mass of the singularity is
sufficiently large. On the other hand, as we will learn, that energy requirements
outmatch the resources generally available by far, even for the most favourable
combinations of parameters. Closing the chapter, we will cite the familiar
argument that the charge of a black hole is not very likely to be large enough
to cause a notable change in our considerations since the electromagnetic force
is much stronger than the gravitational one and leads to its own neutralization
in the course of time.

In chapter 4 on the domains Γ of closed timelike ϕ–curves—i.e. curves where
all coordinates except ϕ are held constant—following thereafter, we have com-
puted their extension in (r, ϑ)–space. Their shape will depend on the mass M ,
the angular momentum a, and the charge Q of the singularity. These domains
are rotationally symmetrical on (t = const)–surfaces with respect to the ϕ–
coordinate and form a distorted torus. They are confined to the negative leg
of r, unless the singular ring carries electromagnetic charge. The larger the
latter is, the more the domain stretches into positive r’s. However, as we will
have learnt in chapter 3, the charge is restricted to very low values and the
penetration of Γ into zones of positive radial coordinate is therefore limited.
The aim of this chapter is to provide calculations and graphs which should give
the reader an impression of the extension of the realm of causality violation.

Chapter 5 will present the analysis of curves spiralling within Γ. These
spirals should not only be timelike and future pointing, but they are supposed
to lead into the past. The idea is that a spacecraft following such a curve would
travel backwards in time with respect to an asymptotic observer, but that its
crew members would nevertheless biologically age. We shall give evidence to
prove that these spirals occur in the same domain as the closed ϕ–curves.

The quantities introduced in order to account for the appeal of the spirals
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to a conceived time traveller include the gain in time, the elapsed proper time
during the enterprise, the tidal forces on the time travel, and the energy con-
sumption necessary to keep on track. The latter will only be investigated in
the last chapter. The gain in time which we are striving for is, of course, the
main objective for the whole journey. This quantity, however, is rather useless
unless we relate it to the proper time elapsed during the respective time gain.
The time gain per revolution (or, synonymously, per period) divided by the
duration of the same revolution will therefore provide a—unitless—quantity of
relevance for our analysis.

The principal purpose of the last chapter is to calculate the energy consumed
when following any elected spiralling curve. To this end, we shall first calculate
the acceleration to be withstood in order to follow specific spirals. Then, we
aim at finding the formula for the relative mass exhaust of fuel per duration
of one complete revolution. We shall analyse the result afterwards, taking the
contemporary technological level of propulsion systems into account. Unfortu-
nately, the conclusion will be rather unwelcome: the energy problem will render
the time travel impossible despite all conceivable efforts.



Chapter 2

Preliminaries

This chapter is intended to offer a brief account on the relevant notions of
what follows hereafter. Above all, it has to provide an idea of the solution in
question of the Einstein equations, namely the Kerr–Newman spacetime. It is
further intended to give a coherent introduction to the tetrad and Newman–
Penrose formalisms of [31]. Finally, we present the explicit calculation of several
important quantities in the spacetime mentioned. In general, the formulae will
be expressed in a system of “natural” units, where c = G = µ0 = 1.1 Wherever
the issue is numerical, we will make use of the SI–units. However, this change
of units will always be indicated.

2.1 Preparing the Stage

For the gravitational collapse of a realistic star with only small asymmetries
and a small net charge, perturbative calculations predict that the spacetime
will correspond to a solution of the electro–vacuum state. Such a solution has
to satisfy the system of equations

Gµν = 8πTµν ,

∇ρF
µρ = 0,

Fµν = ∂µAν − ∂νAµ,

Tµν = − 1

4π

(

FµρF
ρ

ν − 1

4
gµνFρσF ρσ

)

, (2.1)

where Gµν is the Einstein tensor, canonically defined through the Ricci tensor
Rµν

.
= Rρ

µρν and the curvature scalar R
.
= gµνRµν by

Gµν
.
= Rµν − 1

2
Rgµν .

Further, we have in (2.1) the energy-momentum or stress-energy tensor Tµν ,
the electromagnetic field tensor Fµν , the corresponding four–potential Aµ, and
the metric gµν which is determined by the mass distribution in the relevant

1cf. Appendix A
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spacetime. Multiplying the Einstein equations Gµν = 8πTµν by gµν yields

R = −8πgµνTµν . (2.2)

It is clear that an energy–momentum tensor as determined above is traceless,

gµνTµν = − 1

4π

(

gµνFµρF
ρ

ν − 1

4
gµνgµνFρσF ρσ

)

= − 1

4π
FρσF ρσ

(

1 − 1

4
gµνgµν

)

= 0, (2.3)

since we have always gµνgµν = 4 in four dimensions. Hence, in every solution
of the system (2.1), the curvature scalar R vanishes.

The starting point of our research will be the Kerr–Newman solution of
the Einstein–Maxwell equations (2.1). Every solution describing completely
collapsing stars supposedly converges eventually to the Kerr–Newman family.
Though this is not yet proved rigorously, many theorems suggest that a sta-
tionary black hole is determined by the hole’s mass M , angular momentum a,
and charge Q. Thus, a singularity has no other independent characteristics as
e.g. the baryon number. In collapse, the baryon number is therefore probably
not conserved. Poetically afflicted relativists have named this property “black
holes have no hair”.2

Unless specified otherwise, we will use the generalized Boyer–Lindquist co-
ordinates:

ds2 =
∆

Σ
(dt − a sin2 ϑdϕ)2 − sin2 ϑ

Σ
[adt − (r2 + a2)dϕ]2 − Σ

∆
dr2 − Σdϑ2 (2.4)

where

∆
.
= r2 − 2Mr + a2 + Q2,

Σ
.
= r2 + a2 cos2 ϑ. (2.5)

The associated electromagnetic potential is

Aµdxµ =
Qr

Σ
(dt − a sin2 ϑdϕ). (2.6)

This solution describes the stable spacetime of a generic black hole with mass M ,
angular momentum per unit mass a, and electric charge Q where M 2 > a2+Q2.
We exclude a possible magnetic charge explicitly from our considerations. As
the components of this metric do not depend upon the azimuthal angle ϕ nor on
the time coordinate t we have a stationary spacetime which is axisymmetrical.

In accordance to its causal structure, we split this universe into three patches.
For this purpose we briefly outline the construction of the delimiting hyper-
surfaces. The relevant variable for the separation is r. We therefore look at

2For a more thorough account of this aspect, see [1], p. 876, [32], p. 110ff, and [33], p.
292ff.
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hypersurfaces of constant r. On these, the length of curves is given by

γkl
.
= gµν

∂xµ

∂yk

∂xν

∂yl
, (2.7)

where we define γkl as the metric induced on the hypersurface by gµν , i.e.
the components of γkl are the scalar products of the basis vectors ∂xµ

∂yk . On
hypersurfaces with r = const, we find for the induced metric

γkl =
1

Σ





∆ − a2 sin2 ϑ a sin2 ϑ(r2 + a2 − ∆) 0
a sin2 ϑ(r2 + a2 − ∆) ∆a2 sin4 ϑ − sin2 ϑ(r2 + a2)2 0

0 0 −Σ2



 .

The signature of the hypersurfaces is unequivocally determined by the determi-
nant D of the induced metric: the hypersurface is timelike iff3 D > 0, spacelike
iff D < 0 and null iff D = 0. A simple computation yields D = ∆Σsin2 ϑ. As
Σ and ϑ generally do not vanish, we find the following roots for ∆ = 0:

r± = M ±
√

M2 − a2 − Q2. (2.8)

These hypersurfaces define the boundaries between the above mentioned re-
gions: the external Kerr–Newman spacetime with small or negative radial com-
ponent (EKN−) where −∞ < r < r−, the internal Kerr–Newman spacetime
(IKN) where r− < r < r+, and the external Kerr–Newman spacetime with
positive radial component (EKN+) where r+ < r < +∞. The hypersurfaces
r = const are timelike in the external and spacelike in the internal case respec-
tively. The two null surfaces at r = r± are horizons to the asymptotic observers
in the external regions.

Due to the fact that the maximal analytical extension of the Kerr–Newman
spacetime does not allow closed global timelike curves, it is possible to find con-
tinuous timelike vector fields and thus to define an orientation of time. Locally
time’s arrow is determined by the properties of the vacuum state in Quan-
tum Field Theory, i.e. by β–decay and by K–meson decay. Mathematically,
we choose a local inertial frame in an arbitrary point p ∈ M, where M is a
Riemannian manifold. In the tangential space TpM we have two light cones
of a kind such that any timelike vector in p lives either in the future or in the
past light cone. Taking the above mentioned physical properties of temporally
asymmetrical decays into account, we select an appropriate vector field T µ as
pointing towards the future and thus define the corresponding light cone as
directed accordingly. If the scalar product of two nonvanishing, non–spacelike
vectors in p is positive, then they both lie in the same light cone, and if it turns
out to be negative, they are found in different light cones. We call a curve xµ(λ)
in a time–oriented spacetime (M, g, T ) an oriented causal curve (OCC) iff (a)
ẋµ
±(λ) is well defined everywhere (“±” representing derivatives operating from

the left or the right side respectively), and (b)

gµνT µẋν
± ≥ 0,

gµν ẋµ
±ẋν

± ≥ 0.

3We use “iff” as a shortcut for “if and only if”.
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A hypersurface is said to be orientable iff the normal vector can be chosen
to form a continuous vector field on the whole of the concerned hypersurface.
If a spacetime M with metric g can be oriented in time, then all non–timelike
hypersurfaces in M are orientable.4 The continuous field of the normal vector
can therefore always be directed to the future light cone. If nµ(x) is such a
normal vector field, then gµν ẋµ

±nν ≥ 0 ∀p ∈ (C ∩S), where C is an OCC and S
a non-timelike hypersurface in a time–oriented spacetime (M, g, T ). Equality
will only hold when both vectors are linearly dependent null vectors. But in this
case, one would find that C is tangential to S and does not intersect it. Thus
we come to understand that S can be crossed by C in only one way, namely
from the past to the future side. The future side of the mentioned horizons
at r = r+ and r = r− can hence be turned towards or away from a defined
observer depending on whether he or she lives in EKN+ or EKN− and on the
coordinate system.

In order to study the structural properties of the above constructed space-
time more accurately, we introduce at this place coordinates of an Eddington–
Finkelstein type.5 These so-called advanced and retarded Kerr–Newman co-
ordinates will show us a way to find the maximal analytical extension.6 Our
motivation for these transformations is to avoid the coordinate singularities of
the metric at r = r±. For an asymptotic observer in EKN+, we recognize in
the advanced extension the two null hypersurfaces as event horizons, whereas
in the retarded coordinates they are “horizons of influence”, which our observer
cannot penetrate under any circumstances, not even if he or she is a photon.
Of course, causal questions should always be coordinate–independent. In the
present case, however, we are dealing with different patches and therefore with
different horizons, to be precise.

A last word on the singularities. As can be seen from (B.8) and (2.5),
we find a ring singularity at (r = 0, ϑ = π

2 ). Viewed from our home planet
in the asymptotic region of EKN+, this singular ring is screened by the two
intermediate horizons at r = r±. But viewed from the asymptotic region in
EKN−, the ring is “naked”. That the asymptotic region of our universe (r →
±∞) is flat can easily be seen from the expansion of (2.4) in powers of r−1:

gtt = 1 − 2M
1

r
+ Q2 1

r2
+ O

(

r−3
)

,

gtϕ = 4Ma sin2 ϑ
1

r
− 2Qa sin2 ϑ

1

r2
+ O

(

r−3
)

,

gϕϕ = −r2 sin2 ϑ

(

1 + a2 1

r2
+ O

(

r−3
)

)

,

grr = −
(

1 + 2M
1

r
+
(

4M − a2 sin2 ϑ − Q2
) 1

r2
+ O

(

r−3
)

)

,

gϑϑ = −r2

(

1 + a2 cos2 ϑ
1

r2
+ O

(

r−3
)

)

;

4The proof for this theorem shall here be omitted. It can be found in [34], p. 208.
5For an explicit account of these coordinates see Appendix B.
6For more details, see [23], [24], [32], p. 128 ff, and [34], p. 217f.
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expanding the potential (2.6) accordingly yields:

Aµ =

(

Q
1

r
,−Qa sin2 ϑ

1

r
, 0, 0

)

+ O
(

r−2
)

.

Information can be gained about the multipoles of the source from the coef-
ficients of the expansion of the metric and its accompanying electromagnetic
potential. For instance, the coefficient of r−1 in the expansion of At equals the
electromagnetic charge of the source. Similarly, we recognize the coefficient of
−2r−1 in gtt as the mass of the source and that of 4r−1 sin2 ϑ in gtϕ as its total
angular momentum.

The asymptotic observer in EKN+ thus perceives the source as an object
of mass M , angular momentum J = Ma, and charge Q. Supposing an observer
who lives at a large negative radial component, we state bewilderedly that we
see not only an object with an angular momentum J = −Ma and a charge
−Q—which is still fine—, but also with negative mass −M ! As it is a canonical
procedure in (at least classical) physics to consider mass as a parameter running
over positive, real numbers, we perform a sign–changing transformation r 7→ −r
in our universe. But thus transforming, we will not avoid any of the problems
since the horizons at r = r± would only flip to the other side of the ring and the
trouble with the negative mass would rise anew, this time with respect to our
home planet in EKN+. Luckily, the fact that observers in EKN+ and EKN−
realize different signs when measuring the parameters of the ring singularity
does not violate the condition M 2 > a2 + Q2 for generic black holes. This is
to be understood in the sense that if an astrophysicist in EKN+ discerns the
source as a generic black hole satisfying the latter condition, his colleague in
EKN− would do likewise.

2.2 Tetrad Formalism

In this section we will obtain some results which will later prove useful for our
purposes. Since it has appeared advantageous in many contexts to overcome the
former standard procedure of solving problems in general relativity by consid-
ering a local coordinate basis adapted to the problem at hand, we will introduce
a so–called ”tetrad basis”.7 This tetrad formalism consists of the construction
of four linearly independent vector fields and of the projection of the relevant
quantities onto the tetrad basis. The choice of the tetrad basis depends on the
underlying structure of the spacetime in question and is somewhat a part of the
problem. Thereafter, one only has to consider the equations satisfied by the
projected quantities.

We first provide a brief introduction to the basic definitions necessary for the
understanding of the following. This account follows in its main lines the book
of Chandrasekhar [33]. We define at each point of the spacetime in question a

7Tetrad formalisms have proved advantageous in many respects. For instance, according
to Estabrook and Wahlquist, “The dyadic formalism [...] has the advantages of physical in-

terpretability, mathematical completeness, and wide applicability.” [35] The dyadic formalism
mentioned is derived from a tetrad formalism by basing it on a preferred congruence.
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tetrad basis of four linearly independent, contravariant vectors

e µ
a (a = 1, 2, 3, 4), (2.9)

where Latin letters label tetrad indices and Greek letters tensor indices. Asso-
ciated with the contravariant vectors we have the covariant vectors

eaµ = gµνe ν
a , (2.10)

where gµν denotes the metric tensor. In addition, we also define the inverse eb
µ

of the matrix e µ
a (where the tetrad index is labeling the rows and the tensor

index the columns) in such a way that

e µ
a eb

µ = δb
a and e µ

a ea
ν = δµ

ν . (2.11)

The Einsteinian summation convention also holds for the tetrad indices here
and elsewhere. Further, we assume that

gµνe µ
a e ν

b = ηab, (2.12)

where ηab is the Minkowski metric. This is the case because we choose the basis
vectors e µ

a to be orthonormal.
Given an arbitrary tensor field of a general rank, we obtain its tetrad com-

ponents by projecting it onto the tetrad frame. Thus,

Ha···m
n···z = ea

α · · · em
µ e ν

n · · · e ω
z Hα···µ

ν···ω , (2.13)

and Hα···µ
ν···ω = e α

a · · · e µ
m en

ν · · · ez
ω Ha···m

n···z . (2.14)

In particular, we find for the Riemann tensor

Rabcd = e µ
a e ν

b e ρ
c e σ

d Rµνρσ ,

and Rµνρσ = ea
µeb

νe
c
ρe

d
σRabcd.

The reader should not feel uncomfortable with the simultaneous appearance
of indices of different sorts, since there is no ambiguity providing that the
preceding operational rules are strictly followed.

2.3 A Tetrad for the Kerr–Newman Spacetime

Starting off with the Newman–Penrose choice of basis (null) vectors, we con-
struct an orthonormal tetrad. The novelty of this formalism is its efficacy for
showing the inherent symmetries of the concerned spacetime. The choice made
by Penrose and Newman was a tetrad of null vectors l, n,m, and m̄, where l
and n are real and m and m̄ are the complex conjugates of one another. They
are required to satisfy the orthogonality conditions,

l · m = l · m̄ = n · m = n · m̄ = 0.

At the same time they are to be null:

l · l = n · n = m · m = m̄ · m̄ = 0.
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In addition, we impose the normalization requirements,

l · n = 1 and m · m̄ = −1.

Then, we have found a null basis of contravariant vector fields,

e1 = l, e2 = n, e3 = m, and e4 = m̄.

The corresponding covariant basis reads

e1 = e2 = n, e2 = e1 = l, e3 = −e4 = −m̄, and e4 = −e3 = −m.

If the null vectors l and n are chosen to be in the principal null directions8, then
the components of the Riemann tensor simplify considerably. In particular,
they are independent of a boost in the (l, n)–hypersurface in our case. The null
vectors must therefore be chosen according to the spacetime at hand. In the
Boyer–Lindquist coordinates xµ = (t, r, ϑ, ϕ) of the Kerr–Newman spacetime
such a null basis is given by [33], p. 299

lµ =
1

∆

(

r2 + a2,+∆, 0, a
)

,

nµ =
1

2Σ

(

r2 + a2,−∆, 0, a
)

,

mµ =
1

ρ̄
√

2
(ia sin ϑ, 0, 1, i csc ϑ) ,

where

ρ̄ = r + ia cos ϑ and ρ̄∗ = r − ia cos ϑ.

We change the order of the coordinates to xµ = (t, ϕ, r, ϑ). Furthermore, we
separate the real and the imaginary part of m. Altogether, this yields

lµ =
1

∆

(

r2 + a2, a,+∆, 0
)

,

nµ =
1

2Σ

(

r2 + a2, a,−∆, 0
)

,

mµ =
1√
2Σ

(

a2 sinϑ cos ϑ + ira sinϑ,

a cot ϑ + ir cscϑ, 0, r − ia cos ϑ
)

.

We construct the desired orthonormal tetrad out of the null basis. At the same
time we boost the tetrad in the (l, n)–plane by a boost parameter α. This action
will help to avoid any troubles that will arise at the horizons of the spacetime.
Applying the combination rule

e µ
1 = ± 1√

2

(

eαlµ + e−αnµ
)

,

e µ
2 = ± 1√

2

(

eαlµ − e−αnµ
)

,

e µ
3 =

1√
2

(mµ + m̄µ) ,

e µ
4 =

−i√
2

(mµ − m̄µ) , (2.15)

8Every Weyl tensor (see equation (2.21)) defines four principal null directions.
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we obtain the comoving tetrad frame

e µ
1 = ± 1√

2

(

(r2 + a2)

(

eα

∆
+

e−α

2Σ

)

, a

(

eα

∆
+

e−α

2Σ

)

,∆

(

eα

∆
− e−α

2Σ

)

, 0

)

,

e µ
2 = ± 1√

2

(

(r2 + a2)

(

eα

∆
− e−α

2Σ

)

, a

(

eα

∆
− e−α

2Σ

)

,∆

(

eα

∆
+

e−α

2Σ

)

, 0

)

,

e µ
3 =

1

Σ

(

a2 sinϑ cos ϑ, a cot ϑ, 0, r

)

,

e µ
4 =

1

Σ

(

ra sinϑ, r csc ϑ, 0,−a cos ϑ

)

. (2.16)

This is the comoving frame of four orthogonal vector fields which will provide a
home for many of our future calculations. The sign of the two first vector fields
of the orthonormal frame corresponds to the part of the spacetime concerned.
The “+”–sign will be used in the positive and negative external Kerr–Newman
spacetime and the “−”–sign in the internal respectively. The reason for this
will later emerge in a clearer way.

In order to study its regularity, we transform the tetrad into advanced Kerr–
Newman coordinates9 (AKN) xµ = (v, η, r, ϑ),

e µ
1 = ± 1√

2

(

2(r2 + a2)

∆
eα,

2a

∆
eα,∆

(

eα

∆
− e−α

2Σ

)

, 0

)

,

e µ
2 = ± 1√

2

(

2(r2 + a2)

∆
eα,

2a

∆
eα,∆

(

eα

∆
+

e−α

2Σ

)

, 0

)

,

e µ
3 =

1

Σ

(

a2 sinϑ cos ϑ, a cot ϑ, 0, r

)

,

e µ
4 =

1

Σ

(

ra sinϑ, r csc ϑ, 0,−a cos ϑ

)

.

The reader can easily verify in a straightforward calculation that the or-
thonormality condition

gµνe µ
a e ν

b = ηab (2.17)

holds. Here gµν is the metric of the advanced Kerr–Newman solution. We need
to make sure that the tetrad is regular at the axis of symmetry where ϑ = 0, π.
In order to investigate the behavior of the tetrad near ϑ = 0 we introduce
“regular” coordinates,

x = sinϑ cos η,

y = sinϑ sin η.

where η is the “angular” coordinate. This means that the advanced Kerr–

9Appendix B
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Newman coordinates transform in the following manner:

v 7→ v,

η 7→ arctan
(y

x

)

,

r 7→ r,

ϑ 7→ arcsin
(

√

x2 + y2
)

.

For the Jacobian, we have

∂v

∂v
= 1,

∂r

∂r
= 1,

∂x

∂η
= −y,

∂x

∂ϑ
=

√

1 − (x2 + y2)

x2 + y2
x,

∂y

∂η
= x,

∂y

∂ϑ
=

√

1 − (x2 + y2)

x2 + y2
y.

We finally obtain the tetrad in the “regular” advanced Kerr–Newman frame
xµ = (v, r, x, y),

e µ
1 = ± 1√

2

(

2(r2 + a2)

∆
eα,∆

(

eα

∆
− e−α

2Σ

)

,−2a

∆
eαy,

2a

∆
eαx

)

,

e µ
2 = ± 1√

2

(

2(r2 + a2)

∆
eα,∆

(

eα

∆
+

e−α

2Σ

)

,−2a

∆
eαy,

2a

∆
eαx

)

,

e µ
3 =

1

Σ

√

1 − (x2 + y2)

x2 + y2

(

a2
(

x2 + y2
)

, 0,−ay + rx, ax + ry

)

,

e µ
4 =

1

Σ
√

x2 + y2

(

ra(x2 + y2), 0,−ry − ax
(

1 −
(

x2 + y2
))

,

rx − ay
(

1 −
(

x2 + y2
))

)

.

The direction of our approaching the axis of symmetry does not influence the
“induced” tetrad on the axis substantially. Only the two latter components
of the third and the fourth leg are affected by the ϕ–angle we choose to ap-
proximate the (ϑ = 0)–hyperspace. Independently from ϕ though, both will
eventually vanish at ϑ = 0. Without loss of generality we set ϕ = 0, i.e. we
first move to the x–axis and from there to the origin. As a result we obtain

lim
ϑ→0

e µ
1 = ± 1√

2

(

2(r2 + a2)

∆
eα,∆

(

eα

∆
− e−α

2(r2 + a2)

)

, 0, 0

)

,

lim
ϑ→0

e µ
2 = ∓ 1√

2

(

2(r2 + a2)

∆
eα,∆

(

eα

∆
+

e−α

2(r2 + a2)

)

, 0, 0

)

,

lim
ϑ→0

e µ
3 =

1

r2 + a2

(

0, 0, r, a
)

,

lim
ϑ→0

e µ
4 =

1

r2 + a2

(

0, 0,−a, r
)

,
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where xµ = (v, r, x, y). We consider the tetrad as a matrix e µ
a and calculate its

determinant in order to check its regularity. We have

det e µ
a =

1

r2 + a2
.

Since a is required to be non–zero, det e µ
a 6= 0 (∀r ∈ R) and the matrix is

therefore regular on the axis. But is it still an orthonormal tetrad? This can
easily be seen by checking whether relation (2.17) is satisfied. The reader will
hardly be surprised if we state that this is the case.

We have to apply a Lorentz transformation in order to control the regular-
ity of the tetrad at the horizons, due to the way the tetrad is formulated in
(2.17), the first two legs diverge at ∆ = 0. Since we have previously shown the
regularity on the axis and the orthonormality for all boost parameters α, our
choice of α will not be restricted. If we then fix the boost as

α = ln
|∆|
m2

,

we prevent our tetrad from diverging. The absolute value of the argument is
used in order to give sense to the equation in IKN, where ∆ is negative. The
denominator “m2” designates the unit of area for a two–dimensional surface
and originates from our desire to calculate in correct units. The endangered
two vectors of the orthonormal tetrad thus transform to

e µ
1 =

1√
2

(

2(r2 + a2)

m2
,

2a

m2
,

∆

m2
− m2

2Σ
, 0

)

,

e µ
2 =

1√
2

(

2(r2 + a2)

m2
,

2a

m2
,

∆

m2
+

m2

2Σ
, 0

)

, (2.18)

These vectors are clearly regular at ∆ = 0. For this reason, the whole tetrad is
regular at the horizons near the ring singularity to be found towards the future
of the asymptotic observer.

One word to the “±” prefix of two of the vectors. This sign is introduced
in order to prevent the tetrad from flipping direction at the horizon. Thus, we
provide a continuous tetrad of vector fields through the horizons. Clearly, the
sign has disappeared in (2.18). In this way, we omit an ambiguity which would
arise otherwise since the limit at the horizons would depend upon the side we
are approaching the horizon from.

2.4 The Curvature of the Kerr–Newman Spacetime

In the present section we will apply the newly constructed formalism in order
to calculate the curvature of the Kerr–Newman spacetime, the Ricci tensor and
the curvature scalar. These quantities will be relevant subsequently, e.g. for the
consideration of the tidal forces that would tear and squeeze the “timeonauts”
on their mission to violate causality.

The Riemann tensor is canonically obtained from the metric by first calcu-
lating the Christoffel symbols,

Γµ
αβ =

1

2
gµκ (gακ,β + gβκ,α − gαβ,κ) , (2.19)
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and then the Riemann by means of the Christoffel symbols,

Rµ
νρσ(x) = Γµ

νσ,ρ(x) − Γµ
νρ,σ(x) + Γα

νσΓµ
αρ − Γα

νρΓ
µ
ασ. (2.20)

With a non–trivial metric, we find ourselves quickly in the predicament of an
annoying and rather lengthy calculation with nearly infinitely many opportu-
nities to make mistakes. For this reason we suggest an alternative procedure
which roughly follows Chandrasekhar in his [33]. We express the Riemann
tensor as a function of the Weyl tensor Cabcd, the Ricci tensor Rab, and the
curvature scalar R. The Weyl tensor is something like the “trace–free” part of
the Riemann tensor and thus has 10 independent components, and so has the
Ricci tensor. Hence, the Weyl tensor can be represented by five complex scalars
Ψa. We term these scalars Weyl scalars and borrow their values for the Kerr–
Newman spacetime from Chandrasekhar. The Ricci tensor can be obtained by
calculating the energy–momentum tensor from the electromagnetic potential of
the Kerr–Newman solution.

2.4.1 The Weyl Tensor for the Kerr–Newman Solution

The Weyl tensor is defined by

Cabcd = Rabcd −
1

(n − 2)
(gacRbd + gbdRac − gbcRad − gadRbc)

+
1

(n − 1) (n − 2)
(gacgbd − gadgbc) R, (2.21)

where n means the dimensionality of the concerned spacetime and will be set
to n = 4. Obviously, the tensor constructed in this manner shows all the
symmetries of the Riemann tensor, but

gbdCabcd = 0, whereas gbdRabcd = Rac. (2.22)

If we consider the tensor in the comoving frame, the metric gµν will be repre-
sented by the Minkowski metric and (2.22) will mutate to

Ca1b1 − Ca2b2 − Ca3b3 − Ca4b4 = 0. (2.23)

If written out explicitly for a = b, these equations reduce the list of the indepen-
dent and non–vanishing components of the Weyl tensor from the same 20 as the
Riemann tensor to 16. If we set a 6= b, another reduction of six elements can be
achieved and we are down to ten. A complete set of independent components
could read as follows:

C1212 C1213 C1214 C1223 C1224

C1234 C1313 C1314 C1323 C1324

In the Newman–Penrose formalism of a null tetrad l, n,m, and m̄, the metric
in (2.22) becomes slightly different from the Minkowski case since the tetrad is
not orthonormal. This difference will lead us to a different set of independent
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components. Following Chandrasekhar [33], p. 43f, we obtain in terms of the
Weyl scalars

Clnln = −Ψ2 − Ψ ∗
2 Clnmm̄ = Ψ2 − Ψ ∗

2

Clnlm = −Ψ1 Clmlm = −Ψ0

Clnlm̄ = −Ψ ∗
1 Clm̄lm̄ = −Ψ ∗

0

Clnnm = Ψ3 Cnmnm = −Ψ ∗
4

Clnnm̄ = Ψ ∗
3 Cnm̄nm̄ = −Ψ4

where Clnln is one of the Weyl components in the null frame defined as Clnln =
Cµνρσ lµnνlρnσ. The remaining components are constructed analogously.

We now have to specify the Weyl scalars of the Kerr–Newman spacetime.
All but one vanish [33], p. 579f

Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0,

Ψ2 = − M

(ρ̄∗)3
+

Q2

ρ̄ (ρ̄∗)3
,

where ρ̄ = r + ia cos ϑ and ρ̄∗ = r − ia cos ϑ. In order to split the real and the
imaginary part, we eliminate the division by complex numbers and get

Ψ2 =
1

Σ3

(

−Mρ̄3 + Q2ρ̄2
)

,

from where we can easily derive that

ReΨ2 =
1

Σ3

[

−Mr
(

r2 − 3a2 cos2 ϑ
)

+ Q2
(

r2 − a2 cos2 ϑ
)]

,

ImΨ2 =
a cos ϑ

Σ3

[

−M
(

3r2 − a2 cos2 ϑ
)

+ 2Q2r
]

.

The only nonvanishing components of the Weyl tensor in the frame of the null
tetrad are therefore

Clnln =
2

Σ3

[

Mr
(

r2 − 3a2 cos2 ϑ
)

− 2Q2
(

r2 − a2 cos2 ϑ
)]

,

Clnmm̄ =
2ia cos ϑ

Σ3

[

−M
(

3r2 − a2 cos2 ϑ
)

+ 2Q2r
]

.
(2.24)

Finally, we project the Weyl tensor unto the orthonormal tetrad frame of (2.16),
i.e.

Cabcd = Cαβγδ e α
a e β

b e γ
c e δ

d ,

where Latin letters indicate the orthonormal tetrad and Greek ones the null
tetrad.

Since the transformation between the two frames is governed by (2.15), the
e α
a vector fields are given by these equations. The velocity e µ

1 of the spacecraft
is naturally changed through the boost we included in the construction there by
the velocity β = tanhα. (Thus we make sure that no addition of an arbitrary
velocity can possibly hurt the special relativistic condition β ≤ 1.) Luckily, the
boost factors eα and e−α cancel everywhere except in those components which
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vanish in the Kerr–Newman spacetime. The Weyl tensor is hence independent
of a boost in the (l, n)–plane in our case. This independence means that our
calculations are not altered by a varying of the speed during the journey. Due to
their irrelevance in the present case, we omit the boost factors in the following.

For the above mentioned null tetrad, equation (2.22) leads to

Clαβn + Cnαβl − Cmαβm̄ − Cm̄αβm = 0.

Explicitly, these are the subsequent ten equations:

Clmlm̄ = Cnmnm̄ = Clmnm = Clm̄nm̄ = 0,

and

Clnlm = −Clmmm̄, Clnlm̄ = Clm̄mm̄,
Clnnm = Cnmmm̄, Clnnm̄ = −Cnm̄mm̄,
Clnln = Cmm̄mm̄, Clmnm̄ = 1

2 (Clnmm̄ − Clnln) .

These relations indicate the path to the already stated set of independent com-
ponents of the Weyl tensor with respect to the null tetrad.

Using the symmetry properties of the Weyl tensor which are common to the
Riemann tensor yields

C1212 = Clnln,

C1213 = −1

2
(Clnlm + Clnlm̄ + Clnnm + Clnnm̄) ,

C1214 =
i

2
(Clnlm − Clnlm̄ + Clnnm − Clnnm̄) ,

C1223 =
1

2
(−Clnlm − Clnlm̄ + Clnnm + Clnnm̄) ,

C1224 =
i

2
(Clnlm − Clnlm̄ − Clnnm + Clnnm̄) ,

C1234 = −i Clnmm̄,

C1313 =
1

4
(Clmlm − 2Clnln + Clm̄lm̄ + Cnmnm + Cnm̄nm̄) ,

C1314 = − i

4
(Clmlm − Clm̄lm̄ + Cnmnm − Cnm̄nm̄) ,

C1323 =
1

4
(Clmlm + Clm̄lm̄ − Cnmnm − Cnm̄nm̄) ,

C1324 = − i

4
(Clmlm − Clm̄lm̄ − Cnmnm + Cnm̄nm̄ + 2Clnmm̄) .

By inserting (2.24), we get for the Weyl tensor transformed into the comoving
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tetrad frame

C1212 =
2

Σ3

[

Mr
(

r2 − 3a2 cos2 ϑ
)

− Q2
(

r2 − a2 cos2 ϑ
)]

,

C1213 = C1214 = C1223 = C1224 = 0,

C1234 =
2a cos ϑ

Σ3

[

−M
(

3r2 − a2 cos2 ϑ
)

+ 2Q2r
]

,

C1313 = −1

2
C1212 = − 1

Σ3

[

Mr
(

r2 − 3a2 cos2 ϑ
)

− Q2
(

r2 − a2 cos2 ϑ
)]

,

C1314 = C1323 = 0,

C1324 =
1

2
C1234 =

a cos ϑ

Σ3

[

−M
(

3r2 − a2 cos2 ϑ
)

+ 2Q2r
]

. (2.25)

Thus, the first part of the calculation of the Riemann tensor is completed.

2.4.2 The Ricci Tensor for the Kerr–Newman Solution

According to the definition of the Einstein tensor in section 2.1, an obvious way
to compute the Ricci tensor Rµν is through the Einstein–Maxwell equations
as the energy–momentum tensor Tµν is implicitly given by the corresponding
electromagnetic potential Aµ of the Kerr–Newman solution. We start with the
electromagnetic field tensor Fµν whose nonvanishing components we easily get
from (2.1) and (2.6),

Ftr =
Q

Σ2

(

r2 − a2 cos2 ϑ
)

,

Ftϑ = −2Qra2 sinϑ cos ϑ

Σ2
,

Fϕr = −Qa sin2 ϑ

Σ2

(

r2 − a2 cos2 ϑ
)

,

Fϕϑ =
2Qra sinϑ cos ϑ

Σ2

(

r2 + a2
)

.

Needless to say for the attentive reader, we have used the canonical Boyer–
Lindquist frame here. The electromagnetic field tensor has the manifest sym-
metry Fµν = −Fνµ. We raise the second index by calculating F ν

µ = gνρFµρ,
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where gµν denotes the inverted Kerr–Newman metric. The result is

F r
t = −∆Q

Σ3

(

r2 − a2 cos2 ϑ
)

,

F ϑ
t =

2Qra2

Σ3
sinϑ cos ϑ,

F r
ϕ =

∆Qa

Σ3
sin2 ϑ

(

r2 − a2 cos2 ϑ
)

,

F ϑ
ϕ = −2Qra

Σ3
sinϑ cos ϑ

(

r2 + a2
)

,

F t
r = − Q

∆Σ2

(

r2 − a2 cos2 ϑ
) (

r2 + a2
)

,

F ϕ
r = − Qa

∆Σ2

(

r2 − a2 cos2 ϑ
)

,

F t
ϑ =

2Qra2

Σ2
sinϑ cos ϑ,

F ϕ
ϑ =

2Qra

Σ2
cot ϑ.

The same symmetry properties as for the covariant tensor field Fµν hold for its
contravariant counterpart F ρσ = gρνF σ

ν . We find

F tr = − Q

Σ3

(

r2 − a2 cos2 ϑ
) (

r2 + a2
)

,

F tϑ =
2Qra2

Σ3
sinϑ cosϑ,

Fϕr = −Qa

Σ3

(

r2 − a2 cos2 ϑ
)

,

Fϕϑ =
2Qra

Σ3
cot ϑ.

We can now derive the scalar FρσF ρσ,

FρσF ρσ = 2
(

FtrF
tr + FtϑF tϑ + FϕrF

ϕr + FϕϑFϕϑ
)

= −2Q2

Σ4

[

(

r2 − a2 cos2 ϑ
)2 − 4r2a2 cos2 ϑ

]

.

The factor of two appears because of the antisymmetry of the electromagnetic
field tensor. The next step is to calculate the ten independent components of
the stress–energy tensor Tµν . They are quickly obtained from (2.1) and read as
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follows:

Ttt =
Q2

8πΣ3

(

∆ + a2 sin2 ϑ
)

,

Ttϕ = − Q2a

8πΣ3
sin2 ϑ

(

∆ + r2 + a2
)

,

Ttr = Ttϑ = 0,

Tϕϕ =
Q2

8πΣ3
sin2 ϑ

[

∆a2 sin2 ϑ +
(

r2 + a2
)2
]

,

Tϕr = Tϕϑ = 0,

Trr = − Q2

8π∆Σ
,

Trϑ = 0,

Tϑϑ =
Q2

8πΣ
.

(2.26)

As we have learnt in (2.2) and (2.3), the curvature scalar vanishes in the Kerr–
Newman case. The components of the Ricci tensor are therefore very readily
obtained through the Einstein equations,

Rtt =
Q2

Σ3
(∆ + a2 sin2 ϑ),

Rtϕ = −Q2a

Σ3
sin2 ϑ(∆ + r2 + a2),

Rϕϕ =
Q2

Σ3
sin2 ϑ

[

∆a2 sin2 ϑ + (r2 + a2)2
]

,

Rrr = − Q2

∆Σ
,

Rϑϑ =
Q2

Σ
.

The next task is to project the Ricci tensor into the boosted tetrad frame
(2.16), applying the rules (2.13). Since Rµν = Rνµ, we are confronted with ten
independent components which read

R11 =
Q2

Σ2
, R23 = 0,

R12 = 0, R24 = 0,

R13 = 0, R33 =
Q2

Σ2
,

R14 = 0, R34 = 0,

R22 = −Q2

Σ2
, R44 =

Q2

Σ2
.

(2.27)

Again, we point out that the result is obviously independent of the boost we
introduced in (2.15) and thus independent of the value of the velocity of our
spacecraft.
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Here ends the second task to be completed in order to receive the Riemann
tensor of the Kerr–Newman metric. We are now only a short computation away
from our goal.

2.4.3 The Riemann Tensor for the Kerr–Newman Solution

We put the results of (2.25) and (2.27) into (2.21) and obtain the 20 independent
components of the Riemann tensor for the Kerr–Newman solution in the tetrad
frame as defined in (2.16):

R1212 = R3434 =
1

Σ3

[

2Mr(r2 − 3a2 cos2 ϑ) − Q2(3r2 − a2 cos2 ϑ)
]

,

R1234 = 2R1324 =
2a cos ϑ

Σ3

[

−M(3r2 − a2 cos2 ϑ) + 2Q2r
]

,

R1313 = R1414 = −R2323 = −R2424

= − 1

Σ3

[

Mr(r2 − 3a2 cos2 ϑ) − Q2(r2 − a2 cos2 ϑ)
]

, (2.28)

and

R1213 = R1214 = R1223 = R1224 = R1314 = R1323 =

R1334 = R1424 = R1434 = R2324 = R2334 = R2434 = 0.

This list will prove very useful when considering the tidal forces near the
ring singularity. With these results we conclude the preliminary discussion to
our essay on causality violations in the Kerr–Newman spacetime.





Chapter 3

Travel to the End of the

World

3.1 Itinerary

In order to complete the time travel in question, we first have to reach the prox-
imity of the singularity in EKN− before we are in the position to violate causal-
ity. Living on our home planet in the approximately Euclidean asymptotic re-
gion of EKN+, we therefore need to make a passage through the inhospitable
internal district of Kerr–Newman spacetime to the nearly flat asymptotic part
of EKN−. Arrived there, we will build up a base camp from which we embark
upon the main part of our journey afterwards.

The aim of this chapter is to find this passage without getting lost in the
singularity. Especially near the ring singularity at r = 0, we will meet a chal-
lenging travelling hazard: the tidal forces of the strong curvature. We need to
make sure that our spaceship will not be torn asunder. Furthermore, we must
pay attention to our fuel supply while trying to minimize the time of travel.
Consequently, a geodesic will be an ideal path.

For the calculation of the itinerary we use the advanced Kerr–Newman
coordinates (AKN). Thus we make sure that the horizons are passable because
the future side of the null hypersurfaces are turned away from EKN+ in the
sense of section 2.1. Our home planet has the following coordinates in AKN:

v0 = λ0 + X(r0),

η0 = ϕ0 + Y (r0),

r0 = ζr+,

ϑ0 = ϑ0,

where the subscript “0” labels constant initial values. Without loss of generality,
we assume ϑ ∈ [0, π

2 ]. The factor ζ introduced in the radial component assures
that the initial distance from the horizon at r = r+ is large: ζ � 1.

The basic idea now consists in splitting up the trip into a “tangential” and
a “radial” portion. The first leg will bring us near the “North Pole” of the
universe, i.e. to the axis of symmetry at ϑ = 0, while r and ϕ will remain
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unchanged. After having reached the axis of symmetry, we will travel along it
through a large range of decreasing r.

3.2 Tangential Journey

3.2.1 Parameterization

The tangential section of our journey will certainly be no geodesic as the Γµ
αβ’s

do not vanish, while the second derivatives with respect to λ of the curve of our
path will be zero. For the whole tangential journey we stay in the nearly flat
spacetime. Hence the astronauts will not yet be exposed to any tidal forces of
a noteworthy size. The curve has the following parameterization,

v = r0λ + X(r0),

η = ϕ0 + Y (r0)
.
= η0, (= const)

r = ζr+
.
= r0, (= const)

ϑ = −αλ,

(3.1)

where α > 0 and λ ∈ [−ϑ0

α , 0]. The installed parameter α is a measure for
the speed of our spacecraft and can therefore be chosen only up to a certain
value αmax (speed of light). But once chosen, α remains constant for the sake
of simplicity. The well–known condition for timelikeness of a vector ẋµ is:

gµν ẋµẋν > 0 (3.2)

where a dot means a derivative with respect to λ. With the chosen parameter-
ization, we find

ẋµ =









r0

0
0
−α









. (3.3)

Since Σ > 0 outside the singularity we get

αmax =

√

∆ − a2 sin2 ϑ

Σ
r0. (3.4)

In order to make sure that the argument of the square root remains positive,
our reasoning will be as follows. It will only be positive if the coordinates of
the spacecraft satisfy the condition

r2 + a2 cos2 ϑ − 2Mr + Q2 > 0.

Rearranging this condition leads to

(r − M)2 > M2 − a2 cos2 ϑ − Q2.

This is not only the inequality which is to be obeyed in order to render
the argument of the square root in (3.4) positive, but also the one which de-
fines the exterior bound of the domain called ergosphere. The ergosphere is
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the region outside the horizon of the singularity where we do not find an ana-
logue to the classical gravitational potential and where particles may thus have
arbitrarily small negative energies. Its boundaries are fixed by the inequality
M +

√

M2 − a2 − Q2 < r < M +
√

M2 − a2 cos2 ϑ − Q2. Since the tangen-
tial journey proceeds exclusively in the approximately Euclidean outer space of
EKN+, there is no danger of entering the ergoshere and thus achieving imagi-
nary velocities according to (3.4).

3.2.2 Proper Time

In this subsection we calculate the time s1 used for the tangential leg of our
journey. Starting at λ0 = −ϑ0

α and reaching the axis of symmetry at λ1 = 0, a
simple computation yields

s1 =

∫ λ1

λ0

dλ
√

gµν ẋµẋν

=

∫ λ1

λ0

dλ

√

−α2a4 cos4(αλ) + (1 − 2α2)r2
0a

2 cos2(αλ) + K
a2 cos2(αλ) + r2

0

where

K .
= (1 − α2)r4

0 − 2Mr3
0 + Q2r2

0.

We expand the cosine in powers of α. As we expect α to be small compared to
the speed of light, all orders larger than α2 will be suppressed henceforth. We
get

s1 =

√

A

B

∫ λ1

λ0

dλ

√

√

√

√

1 − r2
0
a2α2

A λ2

1 − a2α2

B λ2

where

A
.
= −(r2

0 + a2)2α2 + r2
0∆(r0),

B
.
= r2

0 + a2.

Obviously, both terms are constants along the tangential curve. Still bearing
α < 1 in mind, we expand the fraction and the root in terms of α and find

s1 =

√

A

B

∫ λ1

λ0

dλ

[

1 +
a2α2

2

(

1

B
− r2

0

A

)

λ2

]

=

√

A

B

ϑ0

α

[

1 +
a2ϑ2

0

6

(

A − r2
0B

AB

)]

. (3.5)

This part of the journey is strictly restricted to the asymptotic region of the
spacetime. For this reason, we may neglect the second term in our approxima-
tion which depends on r0 like 1/r0 for r0 � 1. The latter condition certainly
holds for the asymptotic region. Thus, we obtain

s1 =
ϑ0

α

√

r2
0∆

r2
0 + a2

− α2(r2
0 + a2).
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Again, we use r0 � 1 which simplifies the expression further,

s1 =
ϑ0r0

α

√

1 − α2. (3.6)

In order to check whether our estimate is correct, we compare it with the
result obtained in Minkowski space. It should look the same after our many
approximations, where we principally used the huge distance from the central
body. In the Minkowskian spacetime, we have a diagonal metric which appears
in spherical coordinates as

ds2 = dt2 − dr2 − r2
(

dϑ2 + sin2 ϑdϕ2
)

. (3.7)

We parameterize the curve in a similar way as was done for the curved space-
time. We want the first derivative with respect to λ to be precisely the same as
in (3.3). In order to make sure that our motion proceeds in a timelike fashion,
we apply the well known restriction upon α, viz.

α < 1 (3.8)

where α is again something like an “angular velocity”. To carry out the calcula-
tion of the “Minkowskian proper time sM

1 ”—as we might name it—we integrate
with the same limits as we did in the non–Minkowskian case. We obtain as a
result

sM
1 =

ϑ0r0

α

√

1 − α2, (3.9)

in perfect agreement with (3.6). Assuming the angular velocity to be non–
relativistic (since we have to save our fuel) we may even cut away the higher
order. In the end of this section we will return to the comparison between (3.5)
and its Minkowskian counterpart (3.9). Before that, we will calculate the tidal
forces to learn more about the parameters of the black hole. Next, however, we
complete our journey.

3.3 Radial Journey

Before we take off for the second half of our space travel, we have to take a
closer look on the various singularities of our metric. In case of a = 0, there
results a spherical singularity and there is no passing through to the other side
of the singularity. There is simply no “other side” of the Schwarzschild solution.
Unless stated differently, we therefore assume for all our subsequent calculations
a to be non-zero. We find a singularity at (r = 0, ϑ = π/2). Investigating the
hyperspace r = v = 0, we deduce the induced metric (2.7)

ds2 = − tan2 ϑ
(

a2 cos2 ϑ − Q2 sin2 ϑ
)

dη2 − a2 cos2 ϑdϑ2.

This is a space of two disks, given by ϕ ∈ [0, 2π], ϑ ∈ [0, π/2[ and by ϕ ∈
[0, 2π], ϑ ∈ ]π/2, π] respectively. The singularity at ϑ = π/2 splits the two
halves of the axis in a (ϑ = 0)–axis and in a (ϑ = π)–axis which render hopping
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from one to another impossible. This separation generates two “worlds”. In
turn, they open the field to an analytical extension of the disks along curves of
constant ϑ to negative values of r into the realm of possible causality violations.
Without loss of generality, we henceforth strictly consider civilizations on the
upper disk with the rotational axis at ϑ = 0.

Moreover, it is necessary to ascertain that the degeneracy of the advanced
Kerr–Newman metric on the rotational axis is purely due to a bad choice of
coordinates. To check this we carry out the following local transformation:

x = sinϑ cos η,

y = sinϑ sin η.

We find for the differentials

dϑ =
xdx + ydy

√

(1 − (x2 + y2)) (x2 + y2)
,

dη =
−ydx + xdy

x2 + y2
.

When inserted into (B.6) this transformation leads to

ds2 =

∆(dv + aydx − axdy)2 −
(

x2 + y2
)

(

adv +
(r2+a2)(ydx−xdy)

x2+y2

)2

r2 + a2 (1 − (x2 + y2))

−2dr (dv + aydx − axdy) − r2 + a2
(

1 −
(

x2 + y2
))

(1 − (x2 + y2)) (x2 + y2)
(xdx + ydy)2 .

One recognizes easily that the transformed AKN line element is symmetrical
in x and y except for the signs of the terms linear in x or y. For a combined
limiting process where x and y both approach zero, the direction in the (x, y)–
plane does therefore not influence the limit at x = y = 0. We obtain as a result
of the aforementioned limit on the axis of symmetry with respect to (v, r, x, y)

gµν =









∆
r2+a2 −1 0 0

−1 0 0 0
0 0 −

(

r2 + a2
)

0
0 0 0 −

(

r2 + a2
)









.

This metric has the determinant det(gµν) = −(r2 +a2)2 and is therefore regular
for all r, since we restrict ourselves to real numbers. We confine the further
course of the travel to the two–dimensional submanifold (v, r) of the axis of
rotation. The calculation of the there induced metric γkl gives rise to

γkl =

(

∆
r2+a2 −1

−1 0

)

. (3.10)

This matrix clearly has a constant, non–vanishing determinant and is thus also
regular in the entire subspace for all parameters of the black hole. Hence, we
will not crash into the singularity when reaching the axis of rotation nor when
travelling along it.
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3.3.1 Equations of Motion

We intend to derive the equations of motion for the radial leg of our journey
into the unknown world of EKN−. For this purpose, we consider an uncharged
spaceship of mass m moving in the two-dimensional space of (3.10). Making
use of the proper time ds = dλ

√

gµν ẋµẋν , given the canonical momentum

pµ = mgµν
dxν

ds and the Lagrangian L = m
√

gµν ẋµẋν , we apply the conservation
of the four–momentum

∂L
∂ẋµ

= const.

For an uncharged body of an energy pv = e with respect to positive infinity we
then have the two equations

e = γvkẋk

m2 = γklẋ
kẋl

(3.11)

where

ds = mdλ. (3.12)

There are two solutions of (3.11). We pick the one which corresponds to ṙ < 0:

ṙ2 + V a
eff(r) = 0 (3.13)

v̇ =
r2 + a2

∆

(

e −
√

−V a
eff(r)

)

(3.14)

with

V a
eff(r) = −e2 +

m2∆

r2 + a2

There are only implicit solutions of this system of differential equations. Fortu-
nately, it will prove unnecessary for our intent to solve them explicitly. What
is important though is the fact that motion is only possible where V a

eff(r) is
negative. Building the limit at infinity, we find limr→±∞ V a

eff(r) = −e2 + m2

and for this reason e2 > m2.

We have to check whether V a
eff(r) < 0 is satisfied everywhere on the axis

of symmetry. Discussing the effective potential V a
eff(r), we obtain for the first

derivative

∂V a
eff(r)

∂r
=

2m2

(r2 + a2)2
(

Mr2 − Ma2 − rQ2
)

,

from which we find the global maximum of the function V a
eff(r) at

rmaxpot =
Q2 −

√

Q4 + 4a2M2

2M
. (3.15)
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If we study an uncharged black hole, we hence obtain rmaxpot = −a (and a
minimum at rminpot = +a). We define the shortcut

ρ
.
=

e2 − m2

m2
. (3.16)

In order to ascertain that V a
eff(r) < 0 (∀ r) remains valid even at the maximum,

ρ is restricted by (3.15) through a lower bound,

ρ >
2M2

√

Q4 + 4M2a2 − Q2
. (3.17)

Physically, this means that the potential at the maximum along the radial
travel is higher than in the asymptotic region. Therefore our spacecraft needs
a certain given amount of fuel in order to overcome the barrier of the potential
and to reach its destination which lies behind it.

As we will later see, it is highly improbable that the black hole carries a
charge with it which should be accounted for in our calculations. Confining Q
to zero, we obtain

ρ >
M

a
.

After rescaling to units of M , ā
.
= a/M and Q̄

.
= Q/M , our considerations yield

the minimal energy necessary to complete the radial leg of our journey in case
the singularity is uncharged,

emin = m

√

1 + ā

ā
. (3.18)

We shall provide numerical results of the minimal energy for several combina-
tions of a and Q in section 3.5. If we differentiate (3.18) with respect to ā, we
obtain

∂emin

∂ā
= − m

2Mā2

√

ā

1 + ā
,

which is clearly negative for all values of ā ∈ [0, 1]. For this reason, it proves
favourable to look for a black hole with large angular momentum. From (3.18),
we may also conclude that the larger the mass m of the spacecraft or the mass
M of the singularity becomes, the higher is the minimal energy required to
pass through the ring and to complete the radial leg of our outward journey to
EKN−.

Eventually, the kinetic energy necessary in order to surmount the maximum
of the effective potential is

ekinmin = m

(

√

1 + ā

ā
− 1

)

. (3.19)

For an extreme black hole, we find the minimal kinetic energy ekinmin = m(
√

2−
1), which is smaller than the rest energy of the spacecraft. However, it is not
strictly necessary to burn that much energy in order to reach the domain of
causality violation, since for an uncharged singularity, we do not need any
kinetic energy to reach r = 0 and the domain starts right after we have passed
the singular ring.
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3.3.2 Proper Time

In this subsection we estimate the proper time for the second part of our travel.
Starting with (3.13) and using (3.12), we obtain

ds = − m
√

−V a
eff

dr. (3.20)

The sign corresponds to the direction of our journey from EKN+ to EKN−.
Integration of (3.20) then yields (the subscript “2” designates the second leg of
the trip)

s2 =

∫ ζr+

ζr−

dr

√

r2 + a2

ρr2 + 2Mr + ρa2 − Q2
. (3.21)
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Figure 3.1: f1(r) is the integrand of (3.21) with a = Q = 0.5M and ρ = 1.5ρmin

defined in (3.17). For different values of the parameters, the plot is only
quantitatively but not qualitatively changed. We clearly recognize that
for a small positive r the travelling speed will be high, whereas for a small
negative r the spacecraft will be slowed down. One can also understand
the splitting of the integral (3.21) by means of this figure.

Since we only estimate the order of the time required for our journey, we
split the right-hand side into three integrals with constant integrands which
exceed the original function everywhere. As the integrand approximates

√

1/ρ
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for large r, we choose the following convenient separation:

s2 <

∫ −M−
√

M2+Q2−a2

−ζr+

dr

√

1

ρ − 1
+

∫ Q2/2M

−M−
√

M2+Q2−a2

dr

√

Q2 −
√

4a2M2 + Q4 − 2a2ρ

2M2 + 2ρ(Q2 − a2ρ)
+

∫ ζr+

Q2/2M
dr

√

1

ρ
.

Rescaling to units of M we obtain for the proper time of the radial flight

s2 (ā, Q̄, ζ, ρ,M) < M

[(
√

1

ρ
+

√

1

ρ − 1

)(

1 +

√

1 − ā2 − Q̄2

)

ζ

−
√

1

ρ − 1

(

1 +

√

1 − ā2 + Q̄2

)

−
√

1

ρ

Q̄2

2
(3.22)

+

√

Q̄2 −
√

4ā2 + Q̄4 − 2ā2ρ

2 + 2ρ
(

Q̄2 − ā2ρ
)

(

1 +

√

1 − ā2 + Q̄2

)]

,

where ā, Q̄, ζ, and ρ are the known dimensionless parameters. We get two
restrictions on these quantities:

ā2 + Q̄2 < 1

ρ >
2

√

4ā2 + Q̄4 − Q̄2
(3.23)

We briefly analyze the resulting function s2 (ā, Q̄, ζ, ρ,M) for the proper
time. Clearly, s2 depends linearly on M . For large ζ, we can easily see that
s2 will also grow linearly. The evaluation of the characteristics of the a– and
Q–dependence prove much more complicated. In addition, we see from (3.23)
that if ā is small or if Q̄ is large, our spacecraft will consume a higher energy
than vice versa. As we will later learn in section 3.5, this is generally not to
be expected. In order to get an impression of how the proper time will be
influenced by the angular momentum and the electric charge of the black hole,
the reader may consult Fig. 3.2.

Studying the figures, one needs to be aware of the fact that the inclusive vari-
able ρ depends as mentioned before on ā and Q̄ itself. Trivially, the statement
holds that for larger energies ρ the time required decreases. This shortening of
time happens nonlinearly, as Fig. 3.3 illustrates. A short consideration of (3.22)
leads us to the conviction that the proper time asymptotically approaches zero
for arbitrarily large ρ.

3.4 Tidal Forces

Due to the increasingly changing gravitational potential, our spacecraft and
its pilots will be more imperiled by tidal forces the closer to the singularity
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4ā2 + Q̄4 − Q̄2), i.e. ρ = 1.5ρmin.

PSfrag replacements

250

200

150

100

2 4 6 8 10 12
ρ

s2(ρ) in units of M

Figure 3.3: ρ-dependence of s2 with constant ζ = 100, ā = Q̄ = 0.5. The area left of
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they get. For an estimation of these forces, we first have a look at the relative
acceleration affecting the travellers. Any estimation of numerical values of the
tension and pressure encountered will have to rely upon the calculation of the
Riemann tensor in an orthonormal, co–moving tetrad frame as completed in
Section 2.4.3.

3.4.1 Geodesic Deviation

In order to estimate the tidal forces to be expected when passing through the
ring singularity, we derive the equation of geodesic deviation, which will provide
a measure of the relative acceleration between two neighbouring mass points.
These mass points are at a distance δx from each other and move according to
the corresponding geodesic equations respectively:

d2xµ

dλ2
+ Γµ

βγ(x)
dxβ

dλ

dxγ

dλ
= 0,

d2

dλ2
(xµ + δxµ) + Γµ

βγ(x + δx)
d

dλ
(xβ + δxβ)

d

dλ
(xγ + δxγ) = 0.

Subtracting the upper equation from the lower leads up to the first order in
δxµ to

d2δxµ

dλ2
+

∂Γµ
βγ

∂xρ
δxρ dxβ

dλ

dxγ

dλ
+ 2Γµ

βγ

dxβ

dλ

dδxγ

dλ
= 0. (3.24)

On the other hand, we calculate the second covariant derivative of δxµ. Since
the covariant derivative of any given vector field V µ is defined by

DV µ

Dλ

.
=

dV µ

dλ
+ Γµ

βγ

dxβ

dλ
V γ ,

we obtain

D2

Dλ2
δxµ =

d2δxµ

dλ2
+ Γµ

βγ ẋβ dδxγ

dλ
+

d

dλ

(

Γµ
βρẋ

βδxρ
)

+ Γµ
σγΓσ

βρẋ
βẋγδxρ,

where we used ẋµ .
= dxµ

dλ . After executing the derivative of the product with
respect to the parameter λ, regrouping the terms, applying the chain rule, and
eliminating the second derivatives by means of the geodesic equation and (3.24)
we arrive at

D2

Dλ2
δxµ = −

∂Γµ
βγ

∂xρ
ẋβẋγδxρ +

∂Γµ
βρ

∂xγ
ẋβẋγδxρ

−Γµ
σρ

(

Γσ
βγ ẋβẋγ

)

δxρ + Γµ
σγΓσ

βρẋ
γ ẋβδxρ.

We finally employ the canonical definition of the Riemannian curvature tensor
Rµ

βγρ to find the equation of geodesic deviation:

D2

Dλ2
δxµ = Rµ

βγρẋ
βẋγδxρ. (3.25)
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3.4.2 Stress on the Journey

The relative acceleration of the preceding considerations is termed bµ and given
by

bµ .
=

D2

Dλ2
δxµ.

If we compute bµ in the co–moving frame (2.16), the four-velocity ẋα is given
by the first vector of the tetrad, and the distance δxµ can be conveniently
measured in the frame of the spacecraft itself. Using the manipulations of the
tetrad formalism discussed in section 2.2, we obtain the relative acceleration in
co–moving frame,

ba = ηabR1b1cδx
c, (3.26)

where Latin letters mark quantities measured in the tetrad frame. Extracting
yields

b1 = 0,

b2 = −R1212δx
2,

b3 = −R1313δx
3,

b4 = −R1414δx
4.

Since R1313 = R1414, we have only two different, nonvanishing relative acceler-
ations, which exert their influence in the longitudinal and transverse directions
respectively. These relative accelerations between head and feet, left and right
of the astronauts induce a tidal force upon their bones, muscles, and organs.
For simplicity’s sake, we idealize both, the human body and the space shuttle,
as a homogeneous rectangular box of mass m, of length l in the e µ

2 direction,
and of width and depth w in the e µ

3 and e µ
4 directions. The index “A” will

always denote the astronaut’s measures while “S” indicates the spacecraft.
We calculate the stresses that organic and inorganic matter has to withstand

in order to retain its shape. For the longitudinal force acting on the center of
mass, we consider a mass element dm located at a height h above the center of
mass of the box. This distance h is naturally measured along e µ

2 . To prevent
the acceleration of the mass element away from the center of mass, cosmonautic
life and gear must sustain a force

dFlong = b2 dm = −R1212 h dm.

The upper index of b should not be taken for a exponent, it indicates the
direction of the relative acceleration. Then, the total force across the horizontal
plane of the center of mass is the sum of the forces on all mass elements above
it,

Flong =

∫

(Volume above plane)
b2 dm = −

∫ l/2

0
R1212 h

( m

lw2

)

w2dh

= −R1212
ml

8
,



3.4. Tidal Forces 37

where we used dV = w2dh and the density m/lw2. The stress is defined as
“force per area”, Flong divided by the cross–sectional area w2 in our case,

Tlong = −R1212
ml

8w2
, (3.27)

where the sign decides whether the stress is a tension (T < 0) or rather a
pressure (T > 0). Does the sign in (3.27) agree with the present situation? We
have to delay the resolution of this issue until we know a bit more about it.

Similarly, we get for the transverse force in the e µ
3 and e µ

4 directions

Ftrans = −R1313
mw

8

or, accordingly

Ttrans = −R1313
m

8l
. (3.28)

Since we travel along the axis of symmetry, we may set ϑ = 0. Remembering
(2.28), we recognize that both components of the stress (of the Riemann tensor,
to be precise), longitudinal and transverse, appear with an opposing sign. In
case of an uncharged singularity Q = 0, this effects exactly opposed forces, viz. if
the box is stretched longitudinally, it is compressed transversely and vice versa.
As the tide will turn in one direction, it does so in the other simultaneously.

For the Kerr–Newman spacetime, we get for the stress encountered along
the axis of the spherically symmetrical spacetime:

Tlong = − ml

8w2(r2 + a2)3
[

2Mr(r2 − 3a2) − Q2(3r2 − a2)
]

,

Ttrans =
m

8l (r2 + a2)3
[

Mr(r2 − 3a2) − Q2(r2 − a2)
]

. (3.29)

If we set a = Q = 0 in (3.29), we have the stress suffered in the Schwarzschild
solution of a non–rotating, uncharged black hole. We find

Tlong = − mMl

4w2r3
,

Ttrans =
mM

8lr3
,

in accordance with [1], p. 861. Thus, we obtained the correct sign in (3.27).
Since we have r ≥ 0 in the Schwarzschild solution, Tlong will be negative and
Ttrans positive. Consequently, a venturer challenging the singularity at r = 0
would be stretched longitudinally and squashed in the transverse direction.

We render the numerical analysis of the stress components more convenient
by rescaling the coordinate r and the parameters a and Q of the black hole:

r = Mr̄,

a = Mā,

Q = MQ̄. (3.30)
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The “barred” quantities are all dimensionless in natural units. This scaling to
units of mass M has a meaning beyond the achieved simplicity of the expres-
sions. It puts the angular momentum and the charge into relation with the
mass. This makes sense, since on the one hand we are not allowed to violate
the cosmic censorship with too large parameters. With very low values on the
other hand, the influence of these quantities becomes practically irrelevant for
super–massive galactic nuclei. But it is exactly this influence which is to be
analyzed. The easy–to–handle stress then looks like

Tlong = − ml

8w2M2

1

(r̄2 + ā2)3
[

2r̄(r̄2 − 3ā2) − Q̄(3r̄2 − ā2)
]

,

Ttrans =
m

8lM2

1

(r̄2 + ā2)3
[

r̄(r̄2 − 3ā2) − Q̄(r̄2 − ā2)
]

. (3.31)

These rescaled functions reveal the simple mass–dependence of the stress. Con-
traintuitively, the stress decreases with growing mass of the ring singularity.
The relative angular momentum ā is obviously able to suppress the stress in
case there is a strong rotation. We have to find a singularity with a high enough
mass in order to keep the stress down even if there is a considerably large ro-
tational contribution. If we assume as a rule of thumb that the tension or
pressure should not exceed 10 atmospheres (atm), we are to look for a black
hole with mass M ≥ 106M�. A central body of this mass is likely to be found
in a galactic nucleus. Estimations for a super–massive black hole sitting midst
of a galaxy range from 104M� up to 108M�.1 Galaxy M 106 appears to be a
promising candidate with an approximate mass M ≈ 36·106M�.2 Unless stated
differently, we henceforth assume in the numerical analysis of this chapter

M = 107M� ≈ 1037kg ∼ 107 c2

G
R�, (3.32)

where R� = 1476.69m is the gravitational radius of the sun.
Trivially, the stress will be far from constant along the axis. If the object

is uncharged, the stress is an antisymmetric function and at the very moment
the ring is about to be passed, there will be a dead calm since antisymmetric
functions vanish at the origin. With growing charge, we have a remarkable
rise of the tidal activity. This increase is due to the cosmic censorship which
orders the object to increasingly restrict its angular momentum for a growing
charge. Simultaneously, the tidal waves will more and more destroy the peace
found at r = 0 for Q = 0. This interpretation applies for the longitudinal and
transverse stresses. In Fig. 3.4 we plot Tlong for different sets of parameters ā
and Q̄. Only the curves for the stress on a human can be found in the figure.
Since the ones that affect the craft are very similar if we assume the measures
of the craft to be those of the International Space Station3, we do not show the
respective plots. Although out of the range of the given plot, even T3 will not
exceed T max

3 ≈ 20.6Nm−2. This tension—for such it is—will not trouble man
nor machine.

1[1] p. 887
2[36] p. 395
3 Total mass of all modules: mS = 455865kg; Wingspan (End–to–end width): wS =

108.6m; Length: lS = 79.9m. Specifications according to NASA: http://station.nasa.gov/
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for (ā = 0.6, Q̄ = 0.6), and T3 for (ā = 0.3, Q̄ = 0.9).
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The longitudinal tensions and pressures reach much higher numerical values
than the transverse ones. We provide three examples of transverse tidal stress
in Fig. 3.5. But unlike the former, in the latter we clearly distinguish between
stress affecting astronauts and stress affecting space equipment. Due to the
difference of the respective coefficients, we have to multiply the “human” stress
by a factor of about 137 in order to get the “technical” stress, assuming again
the measures of the International Space Station. Apparently the shape of the
graph is not changed in the two cases. The strongest transverse stress for a
slowly rotating hole (ā = 0.3) is about T max

6 ≈ 0.23Nm−2 for humans and
Tmax

6 ≈ 31.5Nm−2 for the ship. This time, the maximum passes for a pressure
which is easily withstood by the crew. Without going into details of materials
science, we take the solidity of the craft up to the required level for granted.
We do not consider such a construction to be only miraculously possible.

The derivatives of the functions (3.31) with respect to r̄ have four roots. We
pick out those roots which correspond to the global maximum of the absolute
values of (3.31) and fix r there. Of course, this “radius of maximal stress”
depends on the parameters of the singularity. We have determined its mass in
(3.32). Therefore, two variables remain on which equations (3.31) depend. The
plot of Tlong(ā, Q̄) and Ttrans(ā, Q̄) is shown in Fig. 3.6, 3.7, and 3.8. For the
longitudinal T , the size of the stress of crew and craft are comparable, but in
the transverse direction, size differs again by a factor of approximately 137. Of
course, this factor is only due to our choice of m, l, and w. Hence, we plot the
surface graphics for both cases this time. In all three graphics we added a wall
which delimits the domain of an eligible combination of angular momentum and
charge (D), where travel is nearly stress–free. Every point in the phase space
behind this wall is forbidden by cosmic censorship (F).

3.5 Choosing a Reasonable Spacetime

Concluding this section, we explicitly calculate the proper time used to cross the
plane of the ring singularity from the quasi–flat part of EKN+ to the respective
area in EKN− for several possible combinations of the relevant parameters of
the black hole. We fix the mass M at 107M� as we did in the last section. We
discuss four paradigmatic cases,

It is very likely that the galactic nucleus at hand has much angular momen-
tum, since most objects that can collapse to form black holes rotate rapidly.4

By contrast, it is highly probable that no Kerr–Newman black hole shows a
significant charge. The reason is that if we would have Q ∼ M , the electro-
static force would heavily outscore the gravitational pull. If we consider a test
particle with mass m and charge q (either an electron or a proton, depending
on the sign of Q), the repulsive electrostatic force dominates the gravitational

4cf. [1], p. 885
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Figure 3.8: Ttrans(ā, Q̄) for a spacecraft with mS = 455865kg, lS = 79.9m, wS =
108.6m.

Angular Momentum Charge

(I) Large ā = 1.0 None Q̄ = 0
(II) Middle–sized ā = 0.6 Middle–sized Q̄ = 0.6

(III) Small ā = 0.3 Large Q̄ = 0.9
(IV) Tiny ā = 0.1 Tiny Q̄ = 0.1

by a factor

Electrostatic Force

Gravitational Force
=

qQ

mM
≈ 1018...1022, (3.33)

depending on the charge–mass ratio of the test particle. The boundary values
apply whether we have a proton or an electron in the potential. If the test
particle is an ion with much smaller charge–mass ratio, then the huge differential
forces of (3.33) will decrease accordingly. When the total charge–mass ratio of a
body near the black hole approaches zero, it will most presumably be torn into
pieces and the charged particles will accelerate either towards or away from the
singularity, depending on their respective charge. Thus, the black hole is very
likely to attract enough charge from outside to be neutralized. In this sense,
scenario (III) is highly implausible and we will therefore no longer focus on it.
Taking these deliberations into account, we clearly favour scenario (I), but will
nevertheless keep track of (II) and (IV) as well.

Finally, we calculate the tangential and radial proper time (3.6) and (3.22)
necessary to complete the travel and the appropriate maximal stresses on the
radial leg. We still assume M = 107M�. Since we have the distance r0 of our
home planet to the horizon at r = r+,

r0 = ζM

(

1 +

√

1 − ā2 − Q̄2

)

,
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we set ζ = 100 in order to make sure that we start in the asymptotic region. For
the tangential part, we need to specify the speed of travel α and the location of
our home planet ϑ0. We assume a non–relativistic velocity with α = 0.01 � 1.
We put the home base at ϑ0 = π/2 and choose thus the most unfavourable case
where the proper time for the tangential leg becomes maximal.

We confine the available energy ρ consumable on the radial trip to

ρ =
2.01

√

4ā2 + Q4 − Q2
, (3.34)

which is only slightly above the required minimum of (3.17). Fig. 3.9 shows the
numerical values of s1, s2, and the minimal kinetic energy ekin from equation
(3.19) for the now fixed values of the parameters r0, ϑ0, α, ζ, ρ,M, ā, Q̄, and the
mass m of the spacecraft according to footnote 3 on page 38.

s1 [h] s2 [h] ekin [J]

(I) 214.9 20.71 1.87 · 1022

(II) 328.6 3.497 3.61 · 1022

(IV) 427.7 1.829 1.08 · 1023

Figure 3.9: Explicit tangential and radial proper times s1 and s2 in hours and energy
consumption in Joule necessary to complete the journey in the respective
time.

Equations (3.31) are used to calculate the maximal tension or pressure nu-
merically. Here, we assumed for our human space conquerors the measures

mA = 75kg,

lA = 1.8m,

wA = 0.2m, (3.35)

and for the space shuttle

mS = 455865kg,

lS = 79.9m,

wS = 108.6m. (3.36)

The results are given in Fig. 3.10.
Concluding, we state that for all three above discussed scenarios both the

proper times as well as the stresses seem to be within the bounds of possibility.
The time necessary for the whole trip is astonishingly brief and poses no prob-
lem. Only the energy necessary to flee the “square well” potential of the ring
singularity might question the feasibility of our adventure. The energy needs
of the order 1022 J for an spacecraft of the mass of the International Space
Station equals approximately 104 times the total annual energy consumption
of Switzerland...
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(I) 0.253 0.232 1.564 · 10−3 0.214

(II) 1.365 1.249 1.089 · 10−2 1.491

(IV) 258.9 236.9 1.678 229.8

Figure 3.10: Maximal longitudinal and transverse stress along the axis for an as-
tronaut (superscript “A”) and the spacecraft (superscript “S”). The
quantities are measured in Nm−2.



Chapter 4

Domains of Causality

Violations near the Singularity

4.1 Kerr–Spacetime with Q = 0

Our investigation of causality violations will start from the Kerr solution of a
rotating, but uncharged black hole.1 One of the most startling features of the
Kerr spacetime is our finding of domains near the singularity where timelike
curves can possibly violate causality. These curves permit us theoretically to
influence on our past. We will first calculate the extension of these domains in
the case where Q = 0. Only in the next section, some considerations on the
case Q 6= 0 will follow.

The Kerr solution2 can be written as:

ds2 =
∆

Σ
(dt − a sin2 ϑdϕ)2 − sin2 ϑ

Σ
(adt − (r2 + a2)dϕ)2 − Σ

∆
dr2 − Σdϑ2,

which may also be given in matrix form (xµ = t, ϕ, r, ϑ):

gµν =
1

Σ









∆ − a2 sin2 ϑ 2Mra sin2 ϑ 0 0
2Mra sin2 ϑ sin2 ϑ(a2∆sin2 ϑ − (r2 + a2)2) 0 0

0 0 −Σ2

∆ 0
0 0 0 −Σ2









.

Our subsequent focus will be curves describing orbits “around the inside” of
the ring singularity. The curves have constant r and ϑ, but cover the full range
of ϕ. The very special feature of the so–called ϕ–curves is their providing ways
to have a constant t as well, which means that the curves are causally closed.

1For a short account on the subject of violations of causality due to uncharged singularities,
see [33], p. 377ff.

2[4], p. 238. It is given here in the form of Boyer and Lindquist [23], p. 270. We changed
the signature of the metric to our (+ − − −) convention.
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Closed ϕ–curves may thus be formalized:

t = t0

ϕ = −λ

r = r0

ϑ = ϑ0

where λ runs from zero to 2π to complete a full period. The closed ϕ–curves
will be timelike iff

gϕϕ > 0.

Hence, the boundary of the domains where causality violations are possible is
determined by

(r2 + a2)2 − a2∆sin2 ϑ = (r2 + a2)(r2 + a2 cos2 ϑ) + 2Ma2r sin2 ϑ = 0. (4.1)

This equation demands r to be negative, therefore we replace −r by z and
rewrite (4.1) as

(z2 + a2)2

a2(z2 + a2 + 2Mz)
= sin2 ϑ, (z = −r). (4.2)

In the equatorial plane (ϑ = π
2 ), we can expand (4.2) to the following result:

z4
max + a2z2

max − 2Ma2zmax = 0,

which we reduce to

z3
max + a2zmax − 2Ma2 = 0. (4.3)

This last step, which brings the equation down to be cubic, is not possible in
solutions of charged black holes. We make the ansatz

zmax = A sinh(
α

3
).

Since

sinh3(
α

3
) =

1

8
(expα − exp−α −3 exp

α
3 +3 exp−

α
3 )

=
1

4
(sinhα − 3 sinh(

α

3
)),

we obtain from (4.3)

A2 =
4

3
a2 and

α = sinh−1(
3M

a

√
3).

Thus we get

zmax =
2a√

3
sinh

[

1

3
sinh−1

(

3M

a

√
3

)]

. (4.4)
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This equation delimits the range of z in the equatorial plane:

0 ≤ z ≤ zmax.

At this point of the chapter, we include a short consideration on the maximal
value of zmax. We differentiate (4.4) with respect to a,

∂z

∂a
=

2M√
3

[sinhχ − α cosh χ] , (4.5)

where χ = 1
3 sinh−1

(

3
√

3/ā
)

and α =
√

3/(ā2 + 27). For the total range of
ā ∈ [0, 1], we find α < 0 and χ > χmin because sinh−1 is strictly monotonically
increasing. What is the sign of the derivative in (4.5)? In order to answer this
question, we argue that

∂

∂χ

(

∂z

∂a

)

∝ cosh χ − α sinhχ,

which, in turn, is positive everywhere for all α < 1, i.e. ∂z/∂a increases for
growing χ. In case ∂z/∂a is positive at χ = χmin, we have proved

∂z

∂a
> 0 ∀a ∈ [0, 1].

Since χmin = 1
3 sinh−1(3

√
3) = 0.7834, we obtain for the derivative

∂z

∂a

∣

∣

∣

χ=χmin

=
M√

3

[

eχmin(1 − α) − e−χmin(1 + α)
]

.

The range of α is very narrow indeed, i.e.
√

3/28 < α <
√

3/27. Thus, its
variation is negligible. As a result for the derivative, we get

∂z

∂a

∣

∣

∣

χ=χmin

=
M

2
> 0.

As z = z(ā) rises all over the full range of ā, it has a supremum at ā = 1, viz.
zmax = M . Finally, we have therefore proved

|r| ≤ M ∀r ∈ Γ. (4.6)

Similarly, the latitudinal—i.e. ϑ —direction is bound by

sin2 ϑmin ≤ sin2 ϑ ≤ 1, (4.7)

where

sin2 ϑmin = min

[

(z2 + a2)2

a2(z2 + a2 + 2Mz)

]

. (4.8)

We find the minimal ϑ–value through calculating the partial derivative with
respect to z in (4.8), using the convenient transformation z = Mx, and then
computing the range of ϑ for different values a of the angular momentum per
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unit mass in terms of the mass M . Below, we give a few results for typical
values of ā:

for ā = 0.1 x = 0.0556 sin2 ϑmin = 0.1379 ϑmin = 21.80◦

ā = 0.3 x = 0.1552 sin2 ϑmin = 0.3407 ϑmin = 35.71◦

ā = 0.6 x = 0.2809 sin2 ϑmin = 0.5347 ϑmin = 46.99◦

ā = 1.0 x = 0.4142 sin2 ϑmin = 0.6863 ϑmin = 55.94◦

(4.9)

Applying equation (4.2), we find a domain where it is possible to have
closed, timelike ϕ–curves. It is exactly these causality violations which are of
interest to us. Since we do not consider unphysical black holes, we will again
exclude naked singularities with ā > 1. In case we have ā = 0, the spacetime
is described by a Schwarzschild solution and there is no analytical extension
beyond r = 0. Thus, ā is confined to an interval ]0, 1]. A rectangular (r, ϑ)–plot
of the edge of Γ is given in Fig. 4.1.
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Figure 4.1: Edge of the domain Γ where causality violations are possible. Γ is to be
found above the respective graphs.

The plot in Fig. 4.1 shows how the domain Γ contains with increasing angu-
lar momentum a larger and larger spread into the r–direction. Simultaneously,
the domain stretches less and less towards the poles of the rotational axis. The
same result was obtained analytically in (4.4) and (4.8) and numerically in (4.9).

There is another—presumably more instructive—way to present the domain
Γ. We plot it in a “quasi–polar” diagram. In order to map the whole range
[−∞,∞] to a finite interval starting at zero, we apply the transformation

R = arctan(−z) +
π

2
.

As a result of this transformation, we find (r = −∞) mapped to the origin,
whereas (r = 0) and (r = ∞) are concentric circles of different radius. The
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“quasi–polar” plots given in Fig. 4.2 have to be read as rotational bodies around
the axis connecting the North Pole (ϑ = 0) and the South Pole (ϑ = π). The
Γ–domain has a toroidal shape.
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(b) ā = 0.3
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(c) ā = 0.6
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Figure 4.2: The domain Γ of potential causality violation in dependence on the an-
gular momentum ā = a/M of the black hole. The plots use “polar coor-
dinates” r ∈ [−∞,∞] and ϑ ∈ [0, 2π[, where r = −∞ is mapped to the
origin and the radii r = 0 and r = ∞ are plotted as concentric circles.

Interpreting the diagrams, we can easily see what happens to Γ in case of
an increasing angular momentum: it more and more approaches a torus with
a circular intersection. This constriction would continue beyond the physical
limit of ā = 1. In contrast to that, for a very small ā we obtain a domain
which covers nearly the whole sphere of (r = 0) from inside. Finally, as a strict
rule clearly visible in (4.3), the domain Γ does not overlap into the section of
positive r in case of uncharged singularities. If Q no longer vanishes, then Γ
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propagates into the outside of the analytical extension with negative r.

4.2 Kerr–Newman Spacetime with Q 6= 0

The calculation of the Γ–domains for the Kerr–Newman solution is analogous to
the preceding section on the uncharged case. The most startling feature of the
domain of potential causality violation of a charged black hole is the extension
into the “Schwarzschild–patch” of positive r. If Q 6= 0, equation (4.2) changes
to

sin2 ϑ =
(z2 + a2)2

a2(z2 + a2 + Q2 + 2Mz)
, (z = −r). (4.10)

In the equatorial plane, this equation simplifies to

r4 + a2r2 + 2Ma2r − a2Q2 ≤ 0, (4.11)

where we cannot reduce the polynomial to a cubic expression since we have an
“inhomogeneity” due to the charge. Though this complicates matters, we can
find an analytical solution of equation (4.11). In case of equality, two real and
two complex roots may be found. The lengthy form of the solution is confusing
and therefore not worth being printed. For this reason, we are satisfied with a
purely numerical analysis. This analysis will at least have a pedagogical impact.

In order to find out how much the range Γ extends towards the poles, we
have to calculate the minimal ϑ value to which Γ reaches. It is again bound by
(4.7), where

sin2 ϑmin = min

[

(z2 + a2)2

a2(z2 + a2 + Q2 + 2Mz)

]

(4.12)

this time. We compute the minimum of the bracketed function of the (negative)
distance x = z/M . We differentiate the right hand side of (4.12) with respect
to x and obtain

2(ā2 + x2)(ā2(x − 1) + x(2Q̄2 + x(x + 3)))

Mā2(ā2 + Q̄2 + x(x + 2))2
= 0.

The physical solution is the positive root of this equation. Subsequently, we give
the results for several combinations of the parameters ā and Q̄. “x” designates
the position of the minimum, and the “sin2 ϑmin”– and “ϑmin”–columns show
the respective numerical results for the bounds of the range. As usually, the
ϑ–angle is measured from the North Pole.

We have seen in the preceding section that the bound of ϑ recedes to the
equatorial plane with increasing angular momentum. Clearly, in case of con-
stant angular momentum, we have qualitatively the opposite effect for an in-
creasing charge. The higher the charge, the more the domain Γ extends towards
the poles. In order not to violate the cosmic censorship, the tables contain for
large ā only small charge Q̄. The sprawling of the ϑ–range with increasing
charge is also corroborated by Fig. 4.4. Here, the domain reaches much further
down in the second subfigure—where we have Q̄ = 0.6—than in the first one,
where Q̄ is 0.1.
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ā = 0.1

Q̄ x sin2 ϑmin ϑmin

0.1 0.0525 0.1274 20.91◦

0.3 0.0341 0.0736 15.74◦

0.6 0.0130 0.0261 9.30◦

0.9 0.0061 0.0121 6.32◦

ā = 0.3

Q̄ x sin2 ϑmin ϑmin

0.1 0.1524 0.3328 35.23◦

0.3 0.1318 0.2779 31.81◦

0.6 0.0841 0.1674 24.15◦

0.9 0.0484 0.0948 17.94◦

ā = 0.6

Q̄ x sin2 ϑmin ϑmin

0.1 0.2784 0.5294 46.69◦

0.3 0.2597 0.4895 44.40◦

0.6 0.2066 0.3831 38.24◦

ā = 0.9

Q̄ x sin2 ϑmin ϑmin

0.1 0.3818 0.6521 53.86◦

0.3 0.3651 0.6229 52.12◦

Figure 4.3: The ϑ–range for several values of the parameters ā and Q̄. For higher
angular momenta ā, only smaller values are possible for the charge Q̄
due to our decision to confine ourselves to singularities with horizons
between the singular ring and positive infinity, and thus respecting cosmic
censorship.

Again, the cosmic censorship is respected. It indicates that in Fig. 4.4(b)
there are only three examples of Γ–domains. Since 1 − Q̄2 ≈ 0.6 for Q̄ = 0.6,
the plot for ā = 0.6 is left out as it would have been very similar to the one
with ā = 0.8.

The most interesting feature of a domain of potential causality violation
caused by a rotating and charged singularity is certainly the extension of the
domain into the realm of positive radial coordinate, as we have stated earlier.
This extension, of course, is more extreme for higher charges. Fig. 4.4 may give
an idea of what happens for low and for high charges. With a rising charge,
the whole domain migrates more and more into Schwarzschild–like regions of
positive r. We have supplied only the “Cartesian” plots since the “quasi–polar”
ones do not change qualitatively from Fig. 4.2 and the trespassing of the domain
can be detected easier that way.

Concluding, the domain Γ is subjected by a high charge of the singularity
to translation towards positive values of r as well as to diffusion into “polar”
regions of small ϑ–angles.
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ā = 1 − Q̄2

(b) Q̄ = 0.6
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Q̄ = Q/M of the singularity. Here again, Γ is to be found above the lines.



Chapter 5

Time Machines

We are finally equipped with all tools necessary to launch the core issue of this
essay. Our astronauts have reached the distant EKN− patch of a massive sin-
gularity, presumably situated at the centre of a galaxy. The crew has survived
the tidal storm on their dive into the galactic nucleus. The navigator of our
space craft knows the precise extension of the domain where the violation of
causality is possible in dependence of the parameters of the black hole. The
quantitative knowledge of these parameters is thus vital for the success of our
enterprise. We have seen in the previous chapter that closed timelike curves
along ϕ–coordinate lines exist in a certain proximity of the ring. As we will
argue hereafter, it is even possible to find curves along which we travel back-
wards in time. Of course, we are not allowed to include null or even spacelike
curves in our considerations. Trivially, our time travelling craft has to move on
curves directed towards to future, i.e. into the future light cone. We impose
this condition to make sure the biological clocks of the crew members tick nor-
mally. Clearly enough, such travels raise fundamental problems with causality.
However, we will not discuss them philosophically. We confine ourselves to the
theoretical feasibility of time travel in Kerr–Newman spacetime.

The trajectory of the spaceship has to meet certain requirements. Therefore
we build the following conditions into the curve xµ(λ) (where xµ = (t, ϕ, r, ϑ))
which describes the trajectory followed by the spacecraft:

1. The curve needs to be timelike:

gµν ẋµẋν > 0. (5.1)

2. It has to point towards the future:

gµνT µẋν > 0, (5.2)

where the timelike vector field T µ designates the future light cone at each
point.

3. Finally, a time machine has to yield a gain of time:

ṫ < 0. (5.3)
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We employ a simple ansatz for the trajectory of our journey by keeping r and
ϑ constant,

xµ =









κλ
−λ
r0

ϑ0









, (5.4)

where λ ∈ [0, 2π[ for one revolution.
Before we launch our spaceship, we should pause and check the foundations

of our calculations. Are there curves existing which really show all the prop-
erties (5.1) to (5.3)? We will carry through some fundamental considerations
beforehand.

The derivatives of xµ with respect to λ span a four–dimensional tangential
space in every event, i.e. in every point of the manifold. Since we have ṙ =
ϑ̇ = 0 for the curves at stake, let us therefore consider the two–dimensional
intersection with ṫ and ϕ̇ as basis vectors. Early letters in the Latin alphabet
should indicate indices in this two–dimensional intersection. Magic is not part
of science and for this reason, the curve has to be timelike, gabẋ

aẋb > 0. In
order to simplify the calculation we transform to another basis (“σ–basis”),

σ̇1 =

√

∆

Σ

(

ṫ − a sin2 ϑϕ̇
)

,

σ̇2 =

√

sin2 ϑ

Σ

(

aṫ −
(

r2 + a2
)

ϕ̇
)

.

The transformation back to the old basis then reads:

ṫ =
1√
∆Σ

[

(

r2 + a2
)

σ̇1 −
√

∆a sinϑσ̇2

]

,

ϕ̇ =
1√
∆Σ

(

aσ̇1 −
√

∆

sinϑ
σ̇2

)

.

The property (5.1) simplifies to (σ̇1)
2 − (σ̇2)

2 > 0. This condition creates two
null cones in the Minkowski–like two–dimensional space. Which one is pointing
towards the future? The tangent vector u = (1, 0) with respect to the σ–basis
is certainly timelike and transforms to

ū =
1√
∆Σ

(

r2 + a2, a
)

with respect to the (ṫ, ϕ̇)–basis as well as to the (v̇, η̇)–basis of the advanced
Eddington–Finkelstein type of coordinates of Appendix B. According to [34],
p. 220, time orientation in AKN is given by

T µ
a =

(

1, 0,−r2 + a2 − ∆

2Σ
, 0

)

.

Now, we are in the position to calculate whether the above mentioned tangent
vector points towards the future. The result is easily found:

gµνT µ
a ẋν

a =

√

∆

Σ
,
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which is real and positive everywhere where ∆ > 0 because Σ is positive for any
real r and ϑ. Concluding, the tangent vector u = (1, 0) in the σ–basis is time-
like and points towards the future for any external Kerr–Newman spacetime,
presuming the spacecraft stays outside IKN. Is there a curve which has not only
the properties (5.1) and (5.2), but also property (5.3)? If we set σ̇1 = coshχ
and σ̇2 = sinhχ, we may cover the whole future null cone. The requirement
ṫ < 0 then leads to

√

1

∆Σ

(

(

r2 + a2
)

coshχ −
√

∆a sinϑ sinhχ
)

< 0. (5.5)

In case we find a χ which satisfies inequality (5.5), we have shown the existence
of curves meeting all requirements for time travel. The square root is a positive
real number for all domains of interest and may therefore be divided out. We
obtain a new inequality,

tanhχ >
r2 + a2

√
∆a sinϑ

.

The tanh–function is confined to adopting values between −1 and 1 and ϑ
ranges from 0 to π. Hence, we have sinϑ > 0.

Obviously, the sign of the angular momentum a does matter here and also
for the sign of gtϕ of the Boyer–Lindquist coordinates, which—in turn—plays
a role for the sign of the mixed term of inequality (5.1). Thus, a change in the
rotational sense of the singular ring also shifts the light cone, or—technically
spoken—the roots of equation gµν ẋµẋν = 0.

For a > 0 (“clockwise”) and the negative sign which was added in (5.4)
prospectively, we find both roots in the negative zone of κ. This would meet
requirement (5.3). If either the rotation was “counterclockwise” (a < 0) or the
ϕ–curve “clockwise” (ϕ̇ > 0)—but not both—, the roots would shift towards
positive κ and inhibit the planned time travel. The situation is symmetrical
regarding the orientation of both rotations, the one of the singularity and the
one of the space journey. The relevant aspect is just to know that the singularity
and the space craft have to rotate with opposing orientation in order to allow
the possibility of time travel into the past. Without loss of generality, we
inaugurate the conventions a > 0 and ϕ̇ < 0 for the subsequent considerations.

Unfortunately, a convention does not help in making apodictic statements
on physical realities. Since tanh is an asymmetrical function, we have proven
above the existence of causality violating curves if we find an χ which satisfies
the inequality

χ > tanh−1

(

r2 + a2

√
∆a sinϑ

)

.

Since tanh−1 is only defined for arguments between −1 and 1, the square of
the argument must necessarily satisfy

(

r2 + a2
)2

∆a2 sin2 ϑ
< 1 (5.6)
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if a χ is to comply with (5.6). But inequality (5.6) is equivalent to the condition
gϕϕ > 0 in (4.11). We have just proved the following theorem:

Theorem 1 Spiralling curves (5.4) satisfying properties (5.1) to (5.3) are found
in the same domain Γ as the closed timelike ϕ–curves (4.1).

For these reasons, we are confident about the existence of causality violating
curves and may turn our interest towards the actual journey.

5.1 Gain in Time

The main objective of our time travel is—of course—to go back in time as much
and as quickly as possible. Thus, the quantity we might call “gain in time” and
designate with ∆t is introduced. The gain is a function of κ, ∆t = ∆t(κ). The
gain in time per period is defined by

∆t
.
= t |ϕ=2π −t |ϕ=0 .

For a curve such as (5.4), we obtain

∆t = 2πκ. (5.7)

To reach the past, ∆t and therefore κ have to be negative according to condition
(5.3). We are striving for a gain in time as large as possibly attainable without
either hurting travellers nor physical laws. To this end, κ should be as negative
as possible. Timelikeness will eventually define a limit for the negativity of κ.
This limit is a function of the parameters of the singularity as well as of in what
position the spiraling down along the time–axis takes place. Ultimately, then,
the gain in time is also indirectly dependent upon M,a,Q, r, and ϑ. And it is
not the only quantity which shall direct our itinerary.

5.2 Duration per Revolution

The duration of one revolution of the space craft is defined as the interval of
proper time between two subsequent events of passing by the same spot in
space. A central postulate of General Relativity states that the proper time ds
between λ and λ+dλ along a timelike path measured by an ideal clock is given
by1

ds = dλ
√

gµν ẋµẋν . (5.8)

This postulate allows us to calculate the time which expires during one period.
Again, it is emphasized that we have chosen the convention ϕ̇ = −1 and a > 0.
Clearly, this convention does not alter the duration of the flight, but it is still
important for calculating correctly:

∆s =

∫ −2π

0

√

gabẋaẋb
dϕ

ϕ̇
,

= 2π
√

gabẋaẋb, (5.9)

1Cf. [34], p. 45.
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where the expression under the square–root is a polynomial in κ,

gabẋ
aẋb = gttκ

2 − 2gtϕκ + gϕϕ,

=
∆ − a2 sin2 ϑ

Σ
κ2 − 2asin2ϑ

Σ

(

r2 + a2 − ∆
)

κ

+
sin2 ϑ

Σ

[

∆a2 sin2 ϑ −
(

r2 + a2
)2
]

. (5.10)

This factor—which will be used later again—depends only on the r– and ϑ–
coordinates. The duration should not exceed a reasonable measure compared
to the gain in time. In order to optimize this relation, we introduce a quantity
“w” providing the ratio at stake:

w
.
=

∆t

∆s
.

w is a dimensionless quantity whose absolute value should be large enough to
pay out the effort made by the crew. Again, in case the travel leads into the
past, w is negative. For our itinerary, we have

w =
κ

√

gabẋaẋb
(5.11)

as time gain per travel duration. For frankness sake, we introduce the termi-
nology

F (M,a,Q; r, ϑ;κ)
.
= gµν ẋµẋν , (5.12)

where ẋµ is given by the curve (5.4). F = F (M,a,Q; r, ϑ;κ) has the form of a
second order polynomial in κ.

A journey like ours will not only take some travelling time, but also cost a
considerable amount of energy and this shall be calculated in the next chapter.

5.3 Tidal Forces on the Time Travel

Speaking precisely, what we calculate in this section are not the tidal forces,
but rather the relative acceleration per meter between two adjacent geodesics.
For this end, we may well profit from work done earlier in this essay. We have
seen in section 3.4.2 that the longitudinal relative acceleration per distance is
given by

b2

δx2
= −R1212,

and the transverse by

b3

δx3
= −R1313.

Using (2.28), we obtain

b2

δx2
=

1

Σ3

[

2Mr
(

r2 − 3a2 cos2 ϑ
)

− Q2
(

3r2 − a2 cos2 ϑ
)]

,

b3

δx3
= − 1

Σ3

[

Mr
(

r2 − 3a2 cos2 ϑ
)

− Q2
(

r2 − a2 cos2 ϑ
)]

. (5.13)
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To avoid a catastrophe, tidal forces should not exceed a certain threshold. The
relative acceleration per distance should not normally be larger than some 10s−2

which corresponds to a stress of about 102Nm−2. The tidal forces arising from
the strong curvature near the singular ring will thus set limits to our boldness.

5.4 Charge Dependence

We have argued in section 3.5 that the charge of a Kerr–Newman black hole
will always remain tiny compared to its angular momentum and to its mass.
The argument given there provides good reasons to set Q = 0. Furthermore,
∆ and gµν depend only on even powers of Q. Hence, the derivatives of the
components of the metric with respect to r and ϑ as well as the inverse metric
contain only even powers of Q. As a result, the affine connection and the
Riemann curvature tensor are also free of odd powers of Q. Finally, all the
quantities ∆t,∆s, w, b2/δx

2, and b3/δx
3 are only functions of even powers of

Q—and of course of the other parameters. We will learn to understand in the
following chapter that the acceleration ℘ necessary to keep the craft on the
trajectory of our time travel depends also only on the square of the charge.

If we construct the derivatives of the above derived entities with respect
to Q, we obtain therefore only terms with odd powers of Q. At Q = 0 all
these derivatives vanish consequently. This means that none of the mentioned
quantities largely depends on the charge in the region of Q = 0. As the charge
will be confined to small sizes relative to the angular momentum and the mass
of the singularity, we set

Q = 0

for the further analysis. Another choice which dates back to section 3.4.2 re-
gards the mass of the black hole. For the convenience of the travellers, it has
proved to be wise to select a galactic nucleus of at least

M = 107M�,

as we have already postulated in (3.32). We will keep on calculating within a
spacetime where this holds.

5.5 Latitudinal Dependence

It is intuitively clear that the physical quantities introduced in this chapter
will strongly be influenced by whether we fly our spirals in the neighbourhood
of the equatorial plane or not. The tidal forces are the higher, the closer we
get to the singular ring. The duration of one period of the journey depends
not only on the ϑ–angle, but also largely on κ. In case κ increases in absolute
value, the frontier of the domain where time travel is an option moves towards
the equatorial plane. Therefore, timelikeness of the curve has to be carefully
watched.
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5.5.1 Tidal Accelerations

We investigate the latitudinal behaviour of the relative acceleration of two
points of mass at a distance of one meter to each other to start with. Ac-
cording to (5.13), the absolute value of the longitudinal relative acceleration for
an uncharged singularity is twice as large as of the transverse one. Regardless
of the differing sign, we will confine ourselves to the longitudinal case, assuming
that if we are able to control this direction, the other will not cause any trouble.

For a thorough assessment, we will have to develop an idea of an answer to
the question: “How strong a relative acceleration could a human resist without
being torn asunder?”. According to [1], p. 862, a human body will break in
case the tension or pressure upon it exceeds 100 atmospheres. Using the same
measures as in (3.35), the absolute value of the relative acceleration should not
transgress

Rmax
1212 ' 2.5 · 104 1

s2
. (5.14)

Naturally, the tidal forces are not supposed to even come close to this value,
because the journey would certainly not be a wholesome one then.

The trajectory parameter κ does certainly not influence the tidal accelera-
tions as the reader can quickly see from (5.13). We shall study their dependence
from the rotation of the ring and the distance from it.

For a short analytical account to start with, we calculate the derivative of
the longitudinal relative acceleration (5.13) with respect to the angle ϑ,

∂

∂ϑ

(

b2

δx2

)

= −24Mra2

Σ4
sinϑ cosϑ

(

r2 − a2 cos2 ϑ
)

, (5.15)

which leads us to the three extrema ϑ1 = 0, ϑ2 = π/2, and ϑ3 = arccos |r/a|.
Building the second derivative helps to identify the character of the extremal
points:

∂2

∂ϑ2

(

b2

δx2

)

= −24Mra2

Σ5

[(

r2 − a2 cos2 ϑ
){

Σ
(

cos2 ϑ − sin2 ϑ
)

−8a2 sin2 ϑ cos2 ϑ
}

+ 2Σa2 sin2 ϑ cos2 ϑ
]

.

By means of this equation, we easily recognize the principal structure of b2
δx2 .

Clearly, for different regions of the parameter space, the behaviour of the func-
tion in question will be different. We distinguish three parts of the parameter
space: (1) |r| < |a|, (2) |r| = |a|, and (3) |r| > |a|. In the first part (1), we find
maxima at ϑ1 and at ϑ2 because r is always negative in case Q = 0, and a min-
imum at ϑ3. In case of equality (2), ϑ3 stops being well defined and we have to
be content with two extrema, viz. a maximum at ϑ2 and an inflection point at
ϑ1. This inflection point is at the same time a minimum of the function inside
the interval ϑ ∈ [0, π/2]. In the third scenario (3), everything there happens
is a minimum at ϑ1 and a maximum at ϑ2. As can also be recognized in the
subsequent plots for the quantitative analysis, we find a maximum at ϑ = π/2
in any case. Let us proceed to some quantitative considerations.
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First, then, we have a closer look on the impact of the rotation of the singular
ring upon the relative acceleration. Fixing the value of the radial distance r
appropriately, we give two plots of the latitudinal dependence for two different
angular momenta ā.
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Whereas the shape of both Figures 5.1 is quite considerably distinct for
different angular momenta, the absolute value of the maximum is not. Clearly,
for both ā, the relative acceleration will not even get close to the threshold Rmax

1212

for any ϑ. The same can be said of any other value of the angular momentum
within the allowed range.

As we have already stated in section 3.5, the angular momentum of the
black hole is expected to be rather large than small. Fixing a at 0.6M therefore,
we briefly mention the radial dependence of the relative acceleration with two
graphical examples. One expects the tidal forces to increase when approaching
the singular ring. Indeed, intuition is not misleading in that case, as the plots
in Fig. 5.2 indicate.
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Although the tidal accelerations increase near the singularity, even for a
small radial distance r = −0.01M , the relative acceleration in the equatorial
plane is bound by a maximum at about b2

δx2 = 825s−2 for the same values
as in Fig. 5.2, which is still small enough. As we shall see later on, it is not
advantageous for an efficient time gain to stay too close to the ring. Thus, there
are no severe problems emerging from the radial dependence if one stays away
from the ring. Summarizing, excluding the immediate neighbourhood of the
singularity, all cuts through the parameter space of the latitudinal dependence
of the tidal accelerations clearly pose no danger for the bones of the craft’s
crew.

5.5.2 Duration of Journey

How does the height above the equatorial plane influence the duration of one
revolution of the time travel? The duration does not only depend on the para-
meters ϑ, r, and a—M and Q are still fixed—, but also on κ. The hyperspaces
of constant κ of the parameter space are therefore not identical for all values.

Regarding the analytical considerations which are yet to follow in this chap-
ter, we differentiate the function F = F (M,a,Q; r, ϑ;κ) of (5.12) where Q = 0,
i.e.

F =
1

Σ

[

(

∆ − a2 sin2 ϑ
)

κ2 − 4Mra sin2 ϑκ

+sin2 ϑ
{

∆a2 sin2 ϑ −
(

r2 + a2
)2
}]

, (5.16)

with respect to ϑ,

∂F

∂ϑ
=

2 sinϑ cos ϑ

Σ2

[

− 2Mra2κ2 − 4Mraκ
(

r2 + a2
)

+∆a2 sin2 ϑ
(

Σ + r2 + a2
)

−
(

r2 + a2
)3
]

. (5.17)

Then, the derivative of the duration ∆s from (5.9) with respect to ϑ is given
by

∂(∆s)

∂ϑ
=

π√
F

∂F

∂ϑ
.

The extremal points are generally found at ϑ1 = 0 and ϑ2 = π/2, which is
easily acknowledged after reference to (5.17). We spare the somewhat lengthy
analysis of these extrema in terms of higher derivatives and confirm that trends
from computer analysis show that we find a maximum at ϑ2 for all but exotic
combinations of the parameters. The reader may consult Figures 5.3–5.5 for a
pedagogical illustration to this end.

Probing the intersections through the phase space for several values of ā ∈
[0, 1], we find that for any given r̄ in the allowed range, there appears a domain
wherein the curve turns spacelike and should therefore be avoided. This domain
usually covers rather the low angular momenta than the high ones. As we
presume the rotation to be rather quick, we confine ourselves to the range
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r = −0.3M , κ = −0.3M .

above the domain of spacelike curves and give in Fig. 5.3 plots for different
angular momenta.

The time necessary to complete a full revolution rises at the same time as
the rotation speeds up and the curve moves towards the equatorial plane. On
the other hand, the scope of clearance for κ to become more negative—while
the curve still stays timelike—grows. Generally speaking, the higher efficiency
we obtain in our time travel, the more it costs in terms of temporal expenditure,
tidal accelerations, and, as we shall see in the next chapter, energy consumption.
We may stress at this point, however, that the closer to the border of the Γ–
domain we aim to realize our journey with a fixed κ, the more fuel our engines
will burn. As long as we can afford to stay in the centre of Γ without being
torn or without turning too old before the returning from the time travel, we
should do so in order to save energy.

Turning our attention the voyage’s length due to radial variation, we study
Fig. 5.4. Again, we see that only a small range of Γ is permitted in case of a
very small κ, viz. the domain just left of the right vertical line where the graph
does not dip into the negative realm.
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Since r = −0.41M is situated on the border of Γ for the parameter values
used in Fig. 5.4 for calculation, the duration per revolution is smaller for radial
coordinate values close to the edge of Γ than for those in its core. However, the
potential time gain is, of course, also smaller near the edge and will eventually
vanish on the borderline. Evidently, the flying time per period is the longest
on the equatorial plane.

The duration is, of course, also a function of the time gain producing vari-
able κ. The investigation of its influence upon the duration per period is due
next. Eventually, we read from the plots in Fig. 5.5 that the range for potential
causality violations is much broader in the “vertical” direction for smaller ab-
solute values of κ than for curves travelling backwards in time in a more hastily
manner. For κ = 0, we have closed timelike ϕ–curves orbiting the singular ring.
It is therefore clear that in this case, the permitted range of positive flying time
extends all over the domain Γ.
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Obviously enough, this island we are interested in is peeling off like an
onion, layer by layer with an increasingly steep travel into the past. Perhaps
surprisingly, for a better κ–value, we get ceteris paribus a shorter flying time.
For this reason, we shall take the time gain per duration ratio into account.

Finding extrema of w(ϑ), we differentiate (5.11) with respect to ϑ and find

∂w

∂ϑ
= − κ

2
√

F 3

∂F

∂ϑ

From (5.17), we have extrema at ϑ1 = 0 and ϑ2 = π/2. From the fact that

∂2w

∂ϑ2
= − κ

4
√

F 3

[

2F
∂2F

∂ϑ2
− 3

(

∂F

∂ϑ

)2
]

,

where the second derivative of F with respect to ϑ is

∂2F

∂ϑ2
=

1

Σ3

{

2Σ
(

cos2 ϑ − sin2 ϑ
)

+ 8a2 sin2 ϑ cos2 ϑ
}

[{

− 2Mra2κ2

−4Mraκ
(

r2 + a2
)

+ ∆a2 sin2 ϑ
(

Σ + r2 + a2
)

−
(

r2 + a2
)3
}

+ 8∆Σa2 sin2 ϑ cos2 ϑ
]

, (5.18)
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we obtain for the second derivative of w at the extremal point

∂2w

∂ϑ2

∣

∣

∣

ϑ=ϑ2

= − κ

r4
√

F 3

[

2Mra2κ2 + 4Mraκ
(

r2 + a2
)

+
(

r2 + a2
)

{

(

r2 + a2
)2 − ∆a2

}

− ∆r2a2
]

.

We see that w(ϑ2) is a maximum for small κ. In this case, the terms in the
lower line—which are only of first order in κ—contribute more and from (5.6),
we make sure that ∂2w(ϑ)/∂ϑ2 < 0 for ϑ = π/2 and κ < 0 wherever the curve
is timelike.
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The rate of time gain per travel duration should be as deep in the negative
as possible, because this indicates a quick journey into the past. Examining
Fig. 5.6, we find a corroboration that w(ϑ) has a local maximum in the equa-
torial plane, which is imaginably improper for our purpose. This maximum
does not move outside the plane for varying values of κ. Generally, κ makes
a huge difference however. The whole graph of w(ϑ) inside Γ falls towards
much smaller numbers for an increasing κ. Where ∆s has its roots, w drops
into negative infinity. The only drawback is the astronomical—and eventually
diverging—amount of energy necessary to follow these curves, as we will see in
the next chapter. We are therefore in urgent need of a compromise.

Summarizing, we may state that for causality violations on curves near
singularities of a mass comparable to an average galactic nucleus, tidal forces
will not pose a challenge while spiraling into the past—regardless of the angle
ϑ. On the other hand, the gain per duration rate is necessarily vital for our
journey. We cannot ignore the energy consumption however. As we shall see
in the subsequent chapter, the total acceleration—which is vital for the energy
consumption—is minimal at the equator for reasonably large distances from the
singular ring. Hence, we investigate in the further devolution of this chapter the
behaviour of the quantities at stake while confining ourselves to the equatorial
plane,

ϑ =
π

2
.
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The rate w has unfortunately a local maximum in this plane, but if the yield
is still high enough to be economically reasonable, we will save large amounts
of fuel, which—in turn—enables us to proceed on our journey even further.

5.6 Analysis in the Equatorial Plane

After having chosen a spacetime with a certain fixed M and a vanishing Q
and after having restrained ourselves to the equatorial plane, we are left with
three varying parameters a, r, and κ for the following analysis. We aim at
giving a complete account on the dependence on these parameters of the tidal
accelerations, the duration of the journey, and the gain of time to duration
ratio.

5.6.1 Tidal Accelerations

Following precisely the argumentation in section 5.5.1, we restrict the consider-
ations on tidal accelerations on the longitudinal direction. The tidal forces are
independent of the trajectory parameter κ, and the radial distance r must be
between zero and the (negative) minimal value rmax for the uncharged case.2

The singularity should live up, as always, to the “no–nudity–code” for black
holes. Therefore, the angular momentum is restricted to the range ā ∈ [0, 1].

In the equatorial plane near an uncharged singularity, the longitudinal tidal
acceleration originally given in (5.13) simplifies to

b2

δx2
=

2M

r3
. (5.19)

This acceleration is independent of κ and of the angular momentum a. Thus,
it is precisely the same as for a Schwarzschild spacetime.3 However, if we
define the radial distance r in terms of the maximal value allowed, the angular
momentum exerts an indirect influence on the tidal forces, shown in Fig. 5.8.

The radial dependence of the relative acceleration is determined by

∂

∂r

(

b2

δx2

)

= −6M

r4
.

As intuitively accessible, the relative accelerations as well as the radial derivative
diverge at the singularity. Hence, the gradient increases increasingly the closer
we get to r = 0.

Although the relative acceleration is independent of the rotation of the black
hole, the range for the radial coordinate where time travel may take place is
not. Therefore it exerts an indirect influence on the tidal acceleration insofar as
it helps to determine this range. In Fig. 5.7, we show the radial dependence of
the acceleration and two concrete delimitations for different angular momenta.
Clearly, the tidal accelerations grow towards the singular ring for any given
rotation. In order to understand the dependence of the range on the rotation

2Cf. (4.4), where z = −r.
3According to [1], p. 860.
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of the black hole more accurately, we plot Fig. 5.8, which shows that a higher
angular momenta will widen the range allowed and therefore add comfort on
our travel. The dependence on the rotation emerges of the fact that r is defined
in terms of the maximal value rmax. But this range is a function of a in turn,
as may be checked in (4.4). For a larger relative distance like r = 0.9 rmax, the
tidal forces are evidently about one thousand times weaker than for a smaller
one such as r = 0.1 rmax.
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We take the issues of these considerations into account when searching for
a black hole with appropriate parameters and a suitable trajectory within Γ.
Regarding the angular momentum, we will not face a problem in reality since
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there are good reasons to presume it to be of a considerable size. We have
argued for this earlier, viz. in section 3.5.

For the trajectory we are heading for, it will prove clever not to fly too close
to the singularity. Vicinity to the singular ring is of no necessity to our objective.
The optimal radial distance to the ring, where the absolute value of the time
gain per flight duration ratio has a maximum, will be away from its immediate
contiguity. This maximum, however, will, of course, depend on the rotation of
the ring as well as on the trajectory parameter. We leave the tidal accelerations
with the knowledge of the desirability of a high angular momentum in order to
stretch the range for r, allowing a distance from the ring as large as possible.

5.6.2 Temporal Quantities

First, a word on the time gain in the equatorial plane. The gain is only subject
to the trajectory parameter κ. One could therefore—mistakenly—believe that
the rest of the parameters is of no relevance to this question. The influence of
the angular momentum of the hole as well as of the orbit of the craft is certainly
indirect. The rotation and the radial distance determine—apart of course from
the mass and the charge of the black hole and from the angle ϑ—the range of
permitted κ. We calculate with a “relative” κ, where κ is not fixed but defined
in terms of its minimum, i.e. of the larger root of F (M,a,Q; r, ϑ;κ) = gµν ẋµẋν .
For the Kerr–Newman metric, we obtain for the roots of (5.12)

κ1/2 =
1

∆ − a2 sin2 ϑ

[

a sin2 ϑ
(

r2 + a2 − ∆
)

± Σsin2 ϑ
√

∆
]

. (5.20)

We christen the larger of the two roots κ2—the one with the “+”–sign—and
set κ = kκ2, where k ∈ [0, 1]. For different values of the angular momentum
ā and the radial coordinate r̄, κ will thus be different in absolute terms. It is
evident then, that the time gain strongly depends not only on the trajectory
parameter. The time gain ∆t from (5.7) and (5.20) in the equatorial plane is
differentiated with respect to r,

∂(∆t)

∂r
= − 2πk

r2
√

∆(r − 2M)2

[

2∆
(

Mr2 + a2(r − M)
)

+ 2
√

∆Mar2

−r
(

r2 + a2
) (

r2 − 3Mr + 2M 2
)]

.

In this derivative, no general remarks concerning its sign may be made. Com-
puter analysis shows however, that in the region of the parameter space in
which our travel will most likely take place, the derivative is negative and has
no extremal points. In Fig. 5.9, we provide two concrete examples for ∆t as a
function of the distance from the ring.

It is clearly visible that the closer to the singularity we choose our trajectory,
the quicker we are allowed to travel back in time. By the increasing contiguity
to the ring, we achieve an ever larger margin of κ. Another relevant point rises
from Fig. 5.9. Having a closer look to the values printed on the ∆t–axis, we
recognize the difference caused by strongly differing angular momenta. The
first term in (5.20) determines the centre of the range of κ where the curve
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Figure 5.9: Time gain in seconds as function of radial distance r̄ for a small and a
large angular momentum at κ = 0.5κ2. Vertical Line at r = rmax.

ẋµ is spacelike. The translation on the κ–axis towards the values where ẋµ is
timelike as well as directed to the future comes from the second term in (5.20).
This translation indicates the values of κ where our curve becomes lightlike.
Obviously, the first term vanishes for a non–rotating black hole. In this case,
however, there would be no analytic extension into r < 0 and for this reason,
no opportunity to travel backwards in time. Therefore, the smaller the angular
momentum of the ring is, the smaller is the permitted negative range for κ.
This definitely produces another good reason to look for a strongly rotating
black hole.

We turn to the analysis of the flight duration in the equatorial plane for a
given κ. Introducing, it should be emphasized that the duration is subjected to
a change of κ. If we choose the trajectory parameter to be the value of one of the
roots (5.20), the duration of a revolution ∆s given by (5.9) around the the ring
(if “around” is the right preposition...) will tend to vanish. On these grounds,
we conclude that we have to try to get a κ as negative as possible, since this
will not only bestow a large time gain upon our crew, but also a favourable time
of flight. Eventually, the time gain per duration ratio will diverge at κ = κ2.
However, let that ratio pass for the moment and let us come back to the flight
duration.

We differentiate the duration ∆s with respect to r,

∂(∆s)

∂r
=

4π

r2
√

F

[

M(κ + a)2 − r3
]

. (5.21)

The sign of the derivative is positive everywhere inside Γ and ∆s(r) is rising
for all parameter values at stake. One can easily recognize that the increment
grows towards infinity for r −→ 0. The roots of (5.21) at r3 = M(κ + a)2 lie
outside the domain of causality violation.

Fig. 5.10 provides another clear argument not to pass too close to the singu-
larity, for in its vicinity, as we have seen in our previous short analytical account,
the duration of one revolution diverges. Since ∆s = 2π

√
F , the reason for this

divergence is easily found in the singularity of the metric at (r̄ = 0, ϑ = π/2),
i.e. in the divergence of gtt and gtϕ, which, in turn, forces F to run into infinity.
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The derivative of ∆s = ∆s(a) with respect to the angular momentum a is
given by

∂(∆s)

∂a
= − 2π

r
√

F
[a(r + 2M) + Mκ] . (5.22)

The first term in the rectangular bracket is positive, because in Γ we have
|r| < M according to (4.6). The second remains negative for all κ enabling
time travel. If we manage to prove |a| > |κ| ∀κ ∈ [κ2, 0], the derivative of the
time of flight ∆s with respect to the angular momentum a remains positive
throughout the domain Γ.

Theorem 2 Everywhere in the domain Γ, we have |a| > |κ|, provided that the
spiralling curve remains timelike.

Proof: It is clear that if we show |a| > |κ2|, the show is over, since this is the κ
with the highest absolute value. The absolute value of any number is defined by
|x| = x sgnx ∀x ∈ R. Therefore, we hope to rise a contradiction by assuming
a sgna < κ2 sgnκ2, where sgnκ2 = −1 for any travel into the past. Thus,

a sgna < − 1

r(r − 2M)

(

2Mra +
(

r2 + a2
)
√

∆
)

.

Since r(r − 2M) is positive everywhere in the domain, the opponents are both
multiplied by this factor without any change regarding which side has a higher
absolute value. We obtain

ar(r − 2M) sgna < −2Mra −
(

r2 + a2
)
√

∆.

The further argumentation depends on the rotational sense, i.e. whether a is
a positive or a negative number. In case we have sgna = 1, we add 2Mra on
both sides and get

a r2 < −
(

r2 + a2
)
√

∆.
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At this point, it becomes obvious that the left–hand side is greater than the
right–hand side throughout Γ and that we have brought about a contradiction
to the counter-assumption above. In case sgna = −1, the same operation yields

a r2 + 4Mra < −
(

r2 + a2
)
√

∆.

The right–hand side is still negative, whereas the expression on the left is pos-
itive due to the negative angular momentum and therefore larger than the one
on the right. Again, this contradicts the assumption we made initial to this
proof. Hence, we have |a| > |κ2| in both cases and the derivative in (5.22) is
positive in Γ. 2

Summarizing, apart from the time gain increase due to higher angular mo-
mentum, the length of the travel also increases the faster the black hole rotates.
Fig. 5.11 shows the dependence of the duration per period ∆s on the angular
momentum a of the singularity. The plot stays qualitatively the same for all
coordinate values r. Thus, we give only one example.
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Figure 5.11: Duration ∆s in seconds as function of angular momentum ā, which is
measured in units of M . Parameter fixes: κ = 0.5κ2, r = 0.5rmax.
Angular momenta should not extend beyond the vertical line in order
not to violate the cosmic censorship.

The results for the temporal quantities in the equatorial plane are contro-
versial so far. A small distance to the rotating body enables us to travel quickly
backwards in time, but obliges us to plan for a longer flight time. Second, a
large angular momentum offers the opportunity of a higher time gain for the
price of longer flight again. Thus, it is evident to analyze the time gain per
duration ratio w in order to settle the dilemma. We investigate the dependence
of this ratio on the trajectory parameter κ to start with.

We calculate the derivative of w with respect to κ,

∂w

∂κ
=

κ(Ma − κ(r − 2M)) + rF

r
√

F 3
, (5.23)
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which has a root at κ = − r3+a2(r+2M)
Ma . In this case, it depends on the region

of parameter space whether the derivative (5.23) is positive or negative and
whether the extremal point of w = w(κ) lies where our spacecraft moves. The
trends in the numerical analysis of this issue tend to favour a positive derivative
along the interval [κ2, 0].
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The plots in Fig. 5.12 and Fig. 5.14 presuppose the same angular momen-
tum, as there is no qualitative difference in the plots for several different rota-
tions. The distinction between graphs calculated at different distances turns out
to be purely quantitative as well. Regardless of the rotation and the radial co-
ordinate, we recognize that the κ–value for the trajectory which the spacecraft
travels along should be the closest possible to the larger root κ2 of (5.12).

The next step concerns the radial coordinate r, the distance of the trajectory
to the singular ring. For the derivative of the gain per duration ratio with
respect to the radial distance, we obtain

∂w

∂r
= −κ

(

M(a + κ)2 − r3
)

r2
√

F 3
(> 0 ∀r < 0, κ < 0). (5.24)

A maximum is to be found at

r = 3
√

M(a + κ)2,

where the second derivative at this root of (5.24) reads 3κ/
√

F 2. The maximum
lies in the positive realm and therefore outside Γ. For pedagogical purposes,
the reader may confer Fig. 5.13.

The range of how far the trajectory parameter κ may be chosen on the
negative leg naturally depends on in the distance from the singularity that the
craft hovers. From a certain distance r on, it is not even possible to find a
trajectory of non–spacelike travel into the past anymore. Hence, it does maybe
not make sense to insist on defining an “absolute” κ, i.e. a κ independent of r
as we have done above. We go back to the notion of a “relative” κ, one which
is defined in terms of the root κ2 of (5.20): κ = kκ2, where k ∈ [0, 1]. We
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Figure 5.13: The time gain per duration ratio w for fixed κ = −0.1M and ā = 0.6.
When approaching r = rmax from the right, the ratio diverges because
κ is defined in absolute terms.

calculate the derivative the ratio w with respect to r anew, this time with the
relative κ,

∂w

∂r

∣

∣

∣

κ=kκ2

=
k

2r2(r − 2M)2
√

F 3∆

[

2F
{

r
(

r2 + a2
) (

r2 − 3Mr + 2M 2
)

−2
√

∆Mar2 − 2∆
(

Mr2 + a2r − Ma2
)

}

−r
∂F

∂r

√
∆(r − 2M)

{

2Mar +
(

r2 + a2
)
√

∆
}

]

, (5.25)

where ∂F/∂r is a fraction of two polynomials in r in both, the numerator and
the denominator. The numerator includes up to seven orders of r, which, sub-
stituted in the last term of (5.25) would result in a fraction of two polynomials
for ∂w/∂r with something in r11 as the highest order of the numerator. It is
therefore hopeless to attempt to find the roots of (5.25) analytically. Since the
relative κ will vanish at the border of Γ but not in between, where it is nega-
tive, we find a minimum at some r ∈ [rmax, 0]. These heuristic considerations
are corroborated in the computer analysis of the behaviour of w = w(r). This
radial dependence of the time gain per duration ratio is plotted in Fig. 5.14.

As argued beforehand, w has a minimum with respect to the radial coordi-
nate r in the equatorial plane. A detailed computer analysis reveals that the
“quicker” the helmsman steers into the past, the closer the minimum migrates
towards the singularity. For any given κ and ā, the minimum would provide
an ideal orbit. However, the captain of the craft has to take into consideration
that the values of the other parameters are more relevant than the finding of
the minimum. This is exemplified by the scale of the vertical axes in Fig. 5.14.
The absolute value of the minimum in 5.14(a) does not even surpass the three–
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Figure 5.14: Time gain per duration of flight rate for ā = 0.6 as function of radial
distance. The vertical lines indicate the zone where the curve is timelike
and directed towards the future.

percent–mark of the one in 5.14(b). The principal result which may be read
from 5.14 clearly corroborates the intuitive assumption that it is in principle
clever to spiral somewhere in the centre of the radial range allowed. If the
craft flies only at the edge of the domain, it will hardly be possible to travel
back in time. If it gets too close to the singularity, it will eventually crash into
an infinite curvature. Regarding the tidal accelerations, the navigator of the
craft should choose a curve as far from the singular ring as reasonably possible.
Since the tidal forces do not depend upon κ, it may be as high as the energy
consumption to be discussed in the next chapter allows. Concluding, Fig. 5.14
gives evidence of the possibility to keep the craft at a larger distance and still
have a considerably reasonable time gain per flight duration ratio w.

Let us turn to the last analysis in this chapter. The ratio is not only a
function of κ and r, but also of the angular momentum of the black hole. As we
have already mentioned above, a strongly rotating singularity allows for quick
travel into the past, but only for the price of a longer flight duration. We obtain
the derivative

∂w

∂a
=

κ

r
√

F 2
[a(r + 2M) + Mκ] , (5.26)

which is always positive ∀a ∈ Γ—a = 0 is excluded—, since |r| < M and
|a| > |κ| for all combinations of parameters allowed. We find an extremal point
at amin = −Mκ/(r + 2M), where

∂2w

∂a2

∣

∣

∣

a=amin

=
κ(r + 2M)

r
√

F 3
> 0.

The extremal point amin is a minimum for this reason. At this point, the
weakness of the approach with “absolute” parameters may clearly be recognized,
for throughout the zone with the permitted combinations of parameters, the
derivative of the ratio w is positive, but the minimum for the same function is
found at amin > 0. This is interpreted to mean that the angular momentum
cannot take values in the range [0, amin]. To be frank however, it makes much
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more sense to define the trajectory parameter κ in terms of the other quantities
again. We differentiate w with respect to a for κ = kκ2,

∂w

∂a

∣

∣

∣

κ=kκ2

=
k

2r(r − 2M)
√

F 3∆

[

2F
(

a
(

r2 + a2
)

+ 2∆a + 2Mr
√

∆
)

−
√

∆r(r − 2M)κ2
∂F

∂a

]

(5.27)

Closer analytic scrutiny of (5.27) unfortunately turns out to be as hard as it
was for (5.25). Therefore, we provide in Fig. 5.15 a plot of the ratio depending
on the angular momentum ā, where not only κ, but also r is relativized with
respect the angular momentum. We hope to satisfy at least a pedagogical
purpose with this plot and its short discussion.
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Figure 5.15: Time gain per duration of flight rate for κ = 0.5κ2 and r = 0.5rmax

as a function of the angular momentum ā. Angular momenta should
not extend beyond the vertical line in order not to violate the cosmic
censorship.

The graph remains qualitatively the same for all combinations of the pa-
rameters κ and r. Not surprisingly, the ratio w vanishes if the black hole does
not rotate. In this case however, there is no logical possibility to complete a
time travel as our crew does. The graph may be separated basically into two
legs: a zone where the ratio increases quickly in absolute terms and a second
zone where the ratio is not constant, but clearly confined to the region around
w = −0.2. The absolute value of the ratio grows monotonically over the per-
mitted range of ā. Hence, we will not face problems arising from this issue, for
we have assumed in section 3.5 the angular momentum to be high rather than
low.

Our next task consists of assessing the energy consumption during the time
travel. This question is, of course, vital to the entire enterprise and shall be
discussed in the subsequent chapter.



Chapter 6

Energy Consumption during

Time Travel

The spacecraft burns energy in order to remain on the trajectory as planned in
(5.4). The energy burn is mainly due to the attractive force of the strong cur-
vature inside the domain Γ, which has to be resisted. In principle, we calculate
the mass of fuel required to meet a given total acceleration times the duration
of the exhaust. This product is what we are interested in.

We execute all subsequent calculations in the proper system of the craft,
where its velocity vanishes. Newtonian mechanics is therefore valid for our
considerations and no special relativistic formulation will be necessary.

We start with computing the total acceleration on the ϕ–curve.

6.1 Acceleration on Trajectory

The total acceleration ℘ is provided by the subsequent expression,

℘ =
√

|gµν℘µ℘ν |. (6.1)

In order to compute the physical acceleration, the curve has to be reparametrized
with the proper time s. Derivatives have to be expressed with respect to the
proper time. This is obtained by use of (5.8),

dxµ

ds
=

ẋµ

√

gabẋaẋb
,

d2xµ

ds2
=

ẍµ

|gabẋaẋb| .

The individual components of the physical acceleration are given by

℘µ =
d2xµ

ds2
+ Γµ

αβ

dxα

ds

dxβ

ds
. (6.2)
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For the type of curves characterized by (5.4), the second derivatives vanish for
all components. Evaluating (6.2) therefore yields

℘t = 0,

℘ϕ = 0,

℘r =
1

|gabẋaẋb|
(

Γr
ttκ

2 + 2Γr
tϕκ + Γr

ϕϕ

)

,

℘ϑ =
1

|gabẋaẋb|
(

Γϑ
ttκ

2 + 2Γϑ
tϕκ + Γϑ

ϕϕ

)

.

The individual components of the affine connection are listed in Appendix C.
Concluding, we write down the total acceleration:

℘ =
1

2|gabẋaẋb|

√

√

√

√

∣

∣

∣

∣

∣

γrr
(

gtt,rκ
2 − 2gtϕ,rκ + gϕϕ,r

)2

+ γϑϑ
(

gtt,ϑκ2 − 2gtϕ,ϑκ + gϕϕ,ϑ

)2

∣

∣

∣

∣

∣

.

Using F (M,a,Q; r, ϑ;κ) = gttκ
2 − 2gtϕκ + gϕϕ from (5.12), renaming yields

℘ =
1

2|F |

√

∣

∣

∣γrrF 2
,r + γϑϑF 2

,ϑ

∣

∣

∣, (6.3)

the total acceleration which has to be exerted on the craft in order to stay on
the curve (5.4).

Although energy saving propulsion devices may be developed in future, min-
imum total acceleration of our craft is what is needed at the moment. We shall
return to this point later in the chapter.

6.2 Tsiolkovsky Equation

In this section, in order to make estimates about the energy consumption, we
calculate the mass of fuel burned per flight time by means of the Tsiolkovsky–
equation. These considerations assume non–relativistic dynamics, i.e. we do
our calculations in an inertial frame of the rocket.

The propulsion of the spacecraft is due to the expulsion of gases. Each of
these accelerated particles of the exhaust gases takes away its contributions to
the total mass and the momentum of the craft. We term the velocity of the craft
or the rocket vR, its mass mR, its momentum pR = mRvR, and the velocity of
the exhausted gases relative to the craft vE, where vE < 0. Every infinitesimal
ignition causes an infinitesimal change of the craft’s momentum,

dpR

dt
=

dmR

dt
(vR + vE) , (6.4)

where (vR + vE) is the absolute velocity of the exhaust fumes—absolute in the
sense of relative to the coordinate system in use of course. As long as the
velocity of the rocket does not vanish, this formula is only approximately valid,
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since we have ignored the second–order–term. In our case, however, we may
skip it lightheartedly as a result of the vanishing rocket velocity in the inertial
frame we haven chosen.

Generally, there will be external forces acting on the craft in addition. Nat-
urally, these forces also exist in our case, where the gravitational pull tends to
attract the craft towards the singularity. It is important to note at this point
that we work within the framework of General Relativity, though we calcu-
late non–relativistically with respect to Special Relativity. The core of GR,
however, is the idea that gravitational forces are inertial in the sense of the
underlying equivalence principle. Therefore, the metric describes the geometry
of the spacetime which, in turn, shapes the inertial forces. Gravitation has
thus already been included in the acceleration in (6.3) and does therefore not
contribute to the external forces referred to.

The idea now is that many infinitesimal ignitions do change the craft’s prop-
erties macroscopically, thus we have mR = mR(t) and vR = vR(t). Subtracting
the term with the rocket velocity on both sides of (6.4) then yields

mR

dvR

dt
= vE

dmR

dt
. (6.5)

Thus, the acceleration of the craft and the rate at which its mass decreases may
be brought into connection to each other. The Tsiolkovsky equation (or rocket
equation as it is sometimes referred to) is obtained by integration of (6.5),

∆vR = −vE ln
m0

m1
, (6.6)

where the ∆vR is the velocity increment during the whole period of the burn,
m0 the total mass of the craft before and m1 after the burn. Of course, we
always have m1 < m0.

Adopted to our situation with the temporarily constant acceleration ℘ from
(6.3), we may easily compute the fuel exhaust in kilograms per travel time in
seconds necessary to obtain the desired acceleration. To this end, we use (6.5)
and get the following differential equation:

℘

vE

=
1

mR

dmR

dt
.

The function

mR(t) = m0 exp

(

℘

vE

t

)

(6.7)

solves the differential equation, provided that the “decay rate” ℘/vE remains
constant over time. The exhaust velocity is subject to the propulsion system
and given once the spacecraft is constructed. The geometry is invariant under
rotations around the axis of symmetry and the curvature is thus identical for
all values of the ϕ–coordinate. As we travel along ϕ–curves, it makes therefore
sense to assume a time–independent decay rate. The total mass of the craft
will not increase from burning fuel. For this reason, the decay rate should be
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negative—for otherwise we would not term it thus—which is secured by vE < 0
as already stated above and ℘ > 0 from (6.1).

Defining mF

.
= m0 − mR as the fuel burnt after the time t of spiralling in

the domain Γ and introducing

µ(℘, t) =
mF (℘, t)

m0
,

where µ(℘) ∈ [0, 1], we have constructed a quantity well suited for analysis.
Holding ℘ constant, we may try to generate an idea of the time dependence of
µ(t). From its first and second derivative with respect to t, we learn that the
function is monotonically increasing and that its rate of growth diminishes. In
Fig. 6.1, we give an instructive plot of µ(t).
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Figure 6.1: The relative mass exhaust µ as function of the time. The relative mass
exhaust is unitless, since it indicates the share of the fuel in the total
mass of the spacecraft burned within a certain period of travelling time.
We have set ℘ = 0.005ms−2 and vE = −108ms−1.

We quickly see from (6.7) that the relative mass of fuel per time necessary
for the completion of one revolution (t = ∆s) exhausted in order to produce a
certain demanded and therefore given acceleration is

µ(℘ · ∆s) = 1 − exp

(

℘ · ∆s

vE

)

. (6.8)

µ(℘ · ∆s) = 0 means the solution to all our problems, since in this case, no
fuel is needed at all, whereas µ(℘ · ∆s) = 1 signifies that practically the entire
mass of the craft will be exhausted within the first revolution (or even earlier)
in order to keep on track.
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6.3 Analysis of Relative Mass Exhaust

6.3.1 Propulsion Systems

Rockets and spacecrafts may have different propulsion systems. It is relevant
for us to give an overall impression of the state of the art in order to have
reliable assumptions concerning the exhaust velocity vE and thus to assess the
possibility of time travel.

The classification of propulsion systems distinguishes among thermal, elec-
tric, and nuclear drives. The thermal systems are subdivided into chemical
(solid and liquid), solar or laser drives. The electric systems contain electrother-
mal (resistojet, arcjet), electromagnetic (plasma), and electrostatic powerings.
The latter works with electrical power which provides an accelerating potential.
The particles accelerated are either ions or colloids, i.e. aerosol particles.1

Development of propulsion systems has focused mainly on thermal and elec-
tric rockets. Different systems do have different applications according to their
respective performance on various important parameters, such as thrust accel-
eration, exhaust velocity, and specific power, i.e. kinetic power P = 1

2
dm
dt v2

E
per

vehicle mass m, where dm
dt is the exhaust mass flow rate. The thrust acceleration

is given by the vehicle acceleration (or vehicle thrust–to–weight ratio) divided
by the surface acceleration of the concerned celestial body due to gravity.

Unfortunately, all existing propulsion systems are either power or energy
limited. Nuclear or chemical rockets offer poor propellant utilization through
limited exhaust velocity while having high specific power and thrust acceleration
—they are energy limited. Operations from planetary surfaces like launching
vehicles into orbit (where high power is needed) are thus restricted to this
category. Electrically powered systems on the other hand are power limited.
They are characterized by high exhaust velocities, but also by unacceptably
large engine weigh of the apparatus necessary for the electrical conversion in
high–power applications. These systems are confined to operations of very
small accelerations like orbit raising manoeuvres, interplanetary missions, and
spacecraft attitude and orbit control.

According to J. Barrie Moss in [37], p. 109, electrically powered propulsion
systems like ion accelerators reach exhaust velocities up to 102ms−1, whereas
drives on a nuclear or chemical basis remain at least one order below that
velocity. On the other side of the coin, we find the fact that electric systems
are only able to produce thrust accelerations of maximal 10−3 times Earth’s
surface acceleration g. Nuclear and chemical systems on the other hand may
sustain or produce accelerations up to 10g.

Our craft has to be equipped with a drive capable of speeding the exhaust
gases to a velocity as high as technically possible as well as having a large
thrust acceleration at its disposal. Clearly, the higher vE is in (6.8), the smaller
gets µ(℘), the relative mass of fuel per second necessary to produce a given
acceleration ℘. This connection is also intuitively accessible, for under ceteris
paribus conditions, the faster the gases are ejected, the more the craft will gain

1For a more detailed account, cf. Moss, J. B. ‘Propulsion Systems’, in [37], pp. 107–143.
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in velocity. A problem of quite another scope is the acceleration we need to
produce in order to stay on the planned trajectory.

6.3.2 Analysis of Total Acceleration

The less the total acceleration measures, the less energy we burn on our journey.
In this subsection, we focus our investigation on the acceleration ℘ therefore.
For the whole section, we assume the black hole to be uncharged, Q = 0.

Latitudinal Dependence

Let us analyse ℘ as a function of ϑ. Our hope is to find a minimum within the
range [ϑmin, π/2], where it would be favourable to time travel. To this end, we
differentiate ℘ with respect to ϑ,

∂℘

∂ϑ
=

1

2M

1

F 2

√

∣

∣

∣γrrF 2
,r + γϑϑF 2

,ϑ

∣

∣

∣
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(

γrrF,rF,r,ϑ + γϑϑF,ϑF,ϑ,ϑ

)

+F 2
,r
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γrr
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)

+ F 2
,ϑ

(

γϑϑ
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) ]

, (6.9)

where
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Σ

∂F
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]

.

The search for roots of equation (6.9) is somehow hopeless, since the nu-
merator is a polynomial of trigonometric functions of ϑ of order twelve. Far
from recognizing obvious simplifications or helpful substitutions, we choose a
slightly different approach: we argue that in the equatorial plane, due to the
the ϑ → π − ϑ symmetry of the Kerr–Newman spacetime, the first derivative
of any quantity with respect to ϑ vanishes in the equatorial plane and that for
this reason, ϑ = π/2 is at least one solution of ∂℘/∂ϑ = 0.

The function ℘(ϑ) has therefore an extremal point at ϑ = π/2. Differenti-
ating (6.9) one more time with regard to ϑ yields for ϑ = π/2

∂2℘

∂ϑ2

∣

∣
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,
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where

γrr
,ϑ,ϑ

∣

∣

∣

ϑ= π
2

= −2∆a2

r4
< 0,

F,ϑ,ϑ

∣

∣

∣

ϑ= π
2

=
4M

r3

(

aκ + r2 + a2
)2

+ 2∆,

F,r,ϑ,ϑ

∣

∣

∣

ϑ= π
2

= − 4

r3

[

3Ma2(a + κ)2 + 2Mar2(a + κ) − r5
]

> 0.

Since there seems to be no direct proof as to whether the second derivative
is positive or negative at ϑ = π/2—due to the fact that F,ϑ,ϑ changes sign
for different zones in parameter space—we try to find answers numerically.
Computer analysis reveals that close to the singularity at small values of r,
we find a local maximum at ϑ = π/2. In this case, the total acceleration in
the equatorial plane is only slightly above the two minima nearby at ϑ1 <
π/2 and ϑ2 > π/2. With increasing r, this elevation in the equatorial plane
will eventually vanish and becomes a valley for large enough radial distances.
Unfortunately, it is not clear how to find the dividing ridge in the parameter
space analytically. The reader may consult Fig. 6.2 in order to obtain an idea
of the behaviour of the total acceleration as function of ϑ. The mass M of the
singular ring is assumed to be fixed at M = 107M� as in (3.32) unless stated
differently.
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Figure 6.2: Total acceleration ℘ as function of ϑ in ms−2. Two typical examples
are chosen which are supposed to show the subsiding of the maximum in
the equatorial plane for growing r. The angular momentum is fixed at
ā = 0.6, the trajectory parameter at κ = 0.1κ2.

If we consider the factor ℘ ·∆s in the exponent of (6.8), what has been said
in the analytical argument regarding the acceleration remains valid, due to the
fact that

℘ · ∆s =
π√
F

√

∣
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∣
γrrF 2

,r + γϑϑF 2
,ϑ

∣

∣

∣
(6.10)

has a very similar structure to ℘. In Fig. 6.3, we give plots of this factor with
exactly the same parameters as in Fig. 6.2. The minima rise relative to their
neighbourhood for increasing distances.
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Figure 6.3: Total acceleration ℘ times duration of one revolution ∆s as function of
ϑ in ms−1. The angular momentum is fixed at ā = 0.6, the trajectory
parameter at κ = 0.1κ2.

The amount of energy which may be saved by strictly looking for the mini-
mum of ℘(ϑ)—or rather of ℘(ϑ) ·∆s(ϑ)—does not justify the calculatory com-
plications it would take to include the latitudinal dependence in our further
analysis. What promises to be of much higher relevance is the distance r from
the singular ring. To this end, compare the scales of Fig. 6.3(a) and Fig. 6.3(b).
From here onwards, we will therefore certainly get on all right if we confine our
investigation to the equatorial plane. For larger distances r, the total acceler-
ations drops, as we will soon learn. Therefore, we will argue to keep a certain
distance from the ring anyway. As we already did in the preceding chapter, we
set again

ϑ =
π

2
.

In the equatorial case, we find for the total acceleration ℘
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2F ?

√
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)2
∣
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∣ ,

where quantities with stars indicate their respective value in the equatorial
plane. Thus, we have
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r
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Finally, rearranging yields

(℘ · ∆s)? = −2π

r3

√

∆

F ?

[

M(a + κ)2 − r3
]

> 0. (6.11)

Our subsequent analysis is based on this quantity.
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Mass Dependence

Scaling the angular momentum a and the coordinate r to units of M has the
obvious consequence that both become proportional to M . The shortcuts ∆
and Σ are then proportional to M 2 and gtt to 1, gtϕ to M , and gϕϕ to M2.
From considerations regarding units follows the proportionality of the trajectory
parameter κ to M . From all this, we conclude that F ∝ M 2 and finally ℘ ∝
M−1. On the other hand, ∆s is also proportional to M . As µ is only a function
of the product of ℘ and ∆s, the energy required to complete a full revolution
on the curve (5.4) is independent of the mass of the black hole.

Since the time gain ∆t goes proportionally with M as well, the energy
consumption per time gain remains proportional to M−1 however. The larger
the mass of the black hole is, the less energy a given time gain will therefore
cost. The argument here is independent of ϑ.

κ–Dependence

If we differentiate the function F with respect to κ, we obtain at ϑ = π/2

(

∂F

∂κ

)?

= −2

r
[(2M − r)κ + 2Ma] . (6.12)

This equation shows that for the most likely parameter combinations, (∂F/∂κ)?

is positive. It will definitely be positive for all r in Γ if 2a > 3|κ|. For the
derivation of the derivative in (6.12), we implicitly assumed sgna = 1, therefore
we omitted the dashes indicating the absolute value. According to theorem 2
in chapter 5, we argue analogously and come across

2

3
ar (r + M) < −

(

r2 + a2
)
√

∆,

where the left–hand side is unfortunately also negative because of (4.6). The
counterassumption can therefore not be strictly ruled out as it was in the proof
of theorem 2. This means that no conclusive statement regarding the compar-
ison of 2a with 3|κ| may be made. Generally however, the derivative in (6.12)
will be positive.

The derivative of the total acceleration ℘? times the duration per revolution
(∆s)? with respect to κ is given by

∂(℘ · ∆s)

∂κ

∣

∣

∣

ϑ= π
2

=
π

r3

√

∆

(F ?)3

[

− 4M(a + κ)F ?

+
{

M(a + κ)2 − r3
}

(

∂F

∂κ

)? ]

. (6.13)

The first term in the square bracket remains negative in Γ and the second has
the sign of the derivative in (6.12) and will most likely be positive therefore. No
unambiguous evidence concerning the overall sign of ∂(℘ · ∆s)?/∂κ may thus
be given. Clearly though, there must be at least three extremal points at the
roots of the square bracket which is a cubic expression in κ. In order to avoid
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a costly and lengthy analysis of uncertain success however, we jump from this
point to the discussion of the computational investigations into (℘ · ∆s)?(κ).

Broad numerical study reveals that the derivative of ℘ · ∆s with respect to
κ is negative within Γ, for all parameter combinations checked. Obviously, in
these cases, the second term of the square bracket in (6.13) dictates the sign—
with a positive derivative (∂F/∂κ)?. The output graphs appear nearly identical
for most combinations. What is varying is the range of κ, since κ is not allowed
to fall below κ2, which, in turn, depends upon M , a and r. The scale on the
y–axis also changes for different combinations of assumed values. As a general
rule, the swifter the singularity rotates and the further from it we stay, the
lower is the total acceleration required.
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Figure 6.4: A typical graph for (℘ · ∆s)? as function of κ̄ in ms−1. We stay in the
equatorial plane and fix the values for ā at 0.6 and of r at 0.6rmax. The
vertical line indicates κ2, where the ϕ–curves turn out to be lightlike and
even spacelike beyond that limit.

In Fig. 6.4, we provide an example which may give an illustration of the
κ–dependence of the acceleration necessary to travel backwards in time times
the duration of one full revolution. The divergence of ℘ · ∆s at κ = κ2 is due
to the impossibility to achieve a lightlike trajectory for our massive spacecraft.
This means that we have µ(℘ · ∆s) = 1 in the limit κ → κ2. Of course, the
least energy consuming way to travel would be to do it without moving back
in time and to set κ = 0. The factor (℘ · ∆s)? from (6.11) would, in this case,
reduce to

(℘ · ∆s)?
∣

∣

∣

κ=0
= −2π

r3

√

−∆r

r3 + a2r + 2Ma2

(

Ma2 − r3
)

> 0,

where g?
ϕϕ = −1

r

(

r3 + a2r + 2Ma2
)

> 0 inside Γ, as we argued in chapter 4.
Since we would indeed be delighted to complete our time travel as planned,

setting κ = 0 does not offer an option. It is important to note, however, that
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for the sake of the energy consumption of the spacecraft, κ is to be kept as low
as possible.

Radial Dependence

If we differentiate (℘ · ∆s)? with respect to the radial distance r, we obtain

∂(℘ · ∆s)?

∂r
=

π

r4
√

F ?∆

[

6∆M(a + κ)2 − 2r(r − M)
{

M(a + κ)2 − r3
}]

.

Here again, it depends on the region of the parameter space whether the deriva-
tive is positive or negative. As the analytical search for extremal points turns
out to be annoyingly complicated—we have to find roots of a polynomial of
eighth order—, we compute the total acceleration to be mastered when ap-
proaching the singular ring. Naturally, intuition is not led astray and the limit
of (6.11) towards the singularity diverges,

lim
r→0

(℘ · ∆s)? = −2πM(a + κ)2 lim
r→0

1

r3

√

∆

F ?

−π
√

2Ma(a + κ) lim
r→0

1√
−r5

.

As we shall learn from the numerical analysis, (℘ · ∆s)? diverges also at r →
rmax. Since (℘ · ∆s)? is positive for all r, (℘ · ∆s)? has to be minimal for
some r ∈ [rmax, 0]. Therefore, we infer from the numerical analysis that at
an intermediate radial distance—its exact location depending on the values of
M , a and κ—, the product of the total acceleration and the duration becomes
minimal and thus the most favourable. In Fig. 6.5, we give an illustrative graph
for the radial dependence of (℘ · ∆s)?.

Rotational Dependence

We differentiate (6.11) with respect to the angular momentum a,

∂(℘ · ∆s)?

∂a
= − 2π

r3
√

(F ?)3∆

[

(

M(a + κ)2 − r3
) 3∆

2

∂F ?

∂a

+F ?
{

2∆M(a + κ) + a
(

M(a + κ)2 − r3
)}

]

.

The maximum range in the radial direction depends through (4.4) on the an-
gular momentum a, as does the relative trajectory parameter κ = kκ2 through
(5.20). In order to avoid the exploding effort necessary for further calculations,
we switch to a quantitative analysis of ℘(a) · ∆s(a).

The computer analysis reveals unambiguously that the derivative of ℘? with
respect to a has a minimum for all combinations of M , r and κ within the do-
main Γ, provided that r and κ are defined relatively to the angular momentum.
If we define the relevant parameters in absolute terms, we would always en-
counter some pathological region where the acceleration would diverge—in Fig.
6.6 as well as in Fig. 6.4 and Fig. 6.5. Remarkably, we spot a rather wide
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Figure 6.5: A typical graph for (℘ · ∆s)? as function of r̄ in ms−1. We stay in the
equatorial plane and fix the values for ā at 0.6 and of κ at 0.1κ2. The
vertical line indicates r = rmax and hence the limit of the domain Γ.

region where (℘ · ∆s)? remains nearly constant with respect to a. The plot in
Fig. 6.6 provides another case where the crew of the spacecraft should avoid a
singularity with low angular momentum.

Having completed the considerations on the total accelerations encountered
on the equatorial plane, we pass to the final section on energy consumption in
terms of the relative mass of fuel per time, µ(℘ · ∆s).

6.4 Relative Mass Exhaust

In this section, we hope to settle the tiresome energy issue. The relative mass
exhaust per revolution is a function of the total acceleration ℘, the duration of
one period ∆s, and of the exhaust velocity vE. In section 6.3.1, we have argued
that the velocity at which the gases are exhausted basically depends on the
propulsion system and may therefore only hypothetically be varied. We will
assume vE = −102ms−1 to start with, according to [37], p. 109.

Starting from (6.8), we point out that—fixing the exhaust velocity at a
constant level—the first derivative of µ(℘ ·∆s) with respect to ℘ ·∆s is positive
for all values of ℘ ·∆s since the exhaust velocity vE is taken to be negative. On
the other hand, the second derivative is negative everywhere. Thus, µ(℘ ·∆s) is
a monotonically increasing function over the whole range of ℘ ·∆s, but its rate
of increase decreases the more we move towards higher ℘ ·∆s. Corroboration of
the physical intuition predicting a similar behaviour may be found in Fig. 6.7.
It illustrates the necessity of low total accelerations, since for an acceleration of
only 2 · 10−6ms−2, our spacecraft’s fuel evaporates within a second of travelling
time.



6.4. Relative Mass Exhaust 87

PSfrag replacements

0.2 0.4 0.6 0.8 1

1 · 1010

2 · 1010

3 · 1010

ā
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Figure 6.6: A typical graph for (℘ · ∆s)? as function of ā in ms−1. We stay in the
equatorial plane and fix the values for r at 0.6rmax and of κ at 0.1κ2. The
vertical line indicates ā = 1, where the singularity turns out to be naked
with respect to observers in EKN+ beyond that limit.
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Figure 6.7: The relative mass exhaust µ as function of the total acceleration ℘ times
the duration per revolution ∆s. The relative mass exhaust is unitless,
since it indicates the share of the fuel in the total mass of the spacecraft
burned per revolution. We have set vE = −102ms−1.
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We are hence in urgent need of strategies of how to save energy. An obvious
first hope would be the development of propulsion systems with much higher
exhaust velocities than those available today. What is important is the ratio
of total acceleration ℘ divided by the exhaust velocity vE. A 106 times higher
exhaust velocity (a third of the light speed) would naturally allow for 106 times
higher accelerations. However, even such an improvement would not suffice.
The accelerations encountered during the trip are of order 108ms−2, as we have
seen in section 6.3.2, taking the durations discussed in section 5.6.2 into account.
Even if the spacecraft consists of 99% of fuel, the tank would be empty within
a split second.

We should therefore try to find an alternative solution to the problem. Even
if we minimize ℘(r, a, κ), we will never be able to reduce the total acceleration
below, say, 107ms−2 for a fixed mass of M = 107M�. There is one last way out
of the difficulty though. In section 6.3.2, we concluded that the total acceler-
ation ℘ is proportional to 1/M and the duration ∆s to M . If we do not have
the ambition to complete entire revolutions and thus restrict the time spent
spiralling inside Γ below the one necessary for one period. The larger the mass
of the black hole grows, the smaller becomes the ϕ–angle covered during the
duration of our stay inside Γ as well as the time gain remain unchanged. By
virtue of this fact, we may cut the order of ℘ as much as we like. The only
restriction to be observed is nature, i.e. the mass boundary for a black hole.

Imagine a black hole of the mass of the entire known universe in the vis-
ible range. Such an unphysical object would possess a total mass of approxi-
mately 1022M�, assuming the existence of 1011 visible galaxies in the known
domain with an average total mass of 1011M� each.2 With contemporary rocket
technology (vE = −102ms−1), even when orbiting such a super–supermassive
object, the spacecraft would have exhausted half of its mass as propulsion
gases within less than five seconds of travelling time! In case of an uncharged,
strongly rotating object (a = 0.9M), a decent distance from the singular ring
(r = 0.6rmax, ϑ = π/2), and an intermediate trajectory parameter (κ = 0.5κ2),
the time gain to duration of flight ratio is w = −0.219, i.e. for every second
of time gain on orbit in Γ, we have to return to base camp to have our tanks
refilled.

Perhaps the most massive galactic black hole known to man is the nucleus of
the galaxy NGC 4486 (M87), 50 million light years away from earth. It has an
estimated mass MM87 = 3 · 109M�.3 As we have learnt, even this huge mass is
far from being sufficient to confine the energy consumption to a reasonable level.
And this is where our project fails. If the crew of the craft has mastered all
odds, they still face a challenge only to be matched in science fiction stories but
not in physical reality. As theoretical an enterprise our journey was launched,
as impracticable it thus comes to an end.

2According to Ruedi von Steiger (International Space Science Institute, Berne), private
communication.

3Cf. Press Release No.: STScI–PR97–01 of the Space Telescope Science Institute at
http://oposite.stsci.edu/pubinfo/pr/1997/01/PR.html.



Chapter 7

Conclusion

In chapter 2 we introduced some of the basic structures of the Kerr–Newman
electrovacuum solution of the Einstein equations. Maybe the most startling
feature was the fact that an observer in negative infinity of the external Kerr–
Newman spacetime would detect a singular ring of a negative mass at r = 0.
We have found that it is impossible to eliminate this problem by applying the
transformation r 7→ −r, since the horizons would only flip to the other side of
the singularity and the observer in the former positive infinity would now see a
naked singularity with mass −M . The spacetime is symmetrical with respect
to sign–changing transformations such as above.

When starting off from the well–known Newman–Penrose formalism, we
chose two null vectors to be in the two principal null directions of the Kerr–
Newman spacetime and constructed a tetrad in advanced Eddington–Finkelstein
type of coordinates. By means of the Weyl tensor and the Weyl scalars, we
then calculated the components of the Riemann curvature tensor of the Kerr–
Newman solution. The approach followed had the remarkable advantage that
the invariance of the Riemann tensor under boosts in the plane of the principal
null directions and rotations around the axis of symmetry was clearly manifest.
Apart from the study of the structure of Kerr–Newman spacetime, our prelim-
inary remarks in chapter 2 involved the preparation for the calculation of the
tidal forces.

The calculations performed in the preliminary considerations were purely
analytical in character. However, the methods applied in the following chapters
changed. Our investigation often started out from broad numerical analysis
carried out with the aid of computer algebraic programmes. After having fed
the machine with data, we tried to read prevailing trends from the output.
Thereafter, our ambition was to corroborate these trends with analytical calcu-
lations or proofs. In some instances, our efforts were successful, while in others
we had to surrender to high–order polynomials or other obstacles to our analyt-
ical approach. In the latter cases, we supported our conclusions with numerical
data.

In chapter 3, we split the travel to EKN− into two legs, which were called the
tangential and the radial journey respectively: we first travel from anywhere
in the asymptotic region to the axis of symmetry, whence we then continue
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our journey along the axis. However, the latter is by far more interesting.
Although the spacecraft travels along a geodesic (the axis of symmetry), a
minimal energy is necessary in order to surmount the maximum of the effective
potential, which, unfortunately, is higher than its—the potential’s—value in
positive infinity. Equation (3.19) shows the minimal kinetic energy necessary
to follow the entire axis of symmetry for an uncharged black hole. The minimal
kinetic energy is ekinmin = m(

√
2 − 1) even for an extreme black hole of an

angular momentum per unit mass of a = M , which was found at the end of
section 3.3.1 to be the most promising.

We estimated the elapsed proper time for both legs of the trip in (3.6) and
(3.22) and obtained numerical results in Fig. 3.9. Remarkably, the time elapsed
for the tangential part increased for lower angular momenta of the black hole,
while the one for the radial part decreased. However, for the mass M of a
galactic nucleus and an initial distance of one hundred times the distance of the
horizon at r = r+ from the singularity, the radial leg should be covered within
a few hours only.

The longitudinal and transverse stresses encountered on the radial part of
the astronaut’s journey were obtained in equation (3.31), where rescaling to
units of the mass M has been performed precedingly. This rescaling allowed us
to recognize the simple 1/M 2 dependence of the stress. If we chose a galactic
nucleus of at least M = 107M� and an angular momentum not smaller than,
say, a = 0.2M , the tidal stresses did not exceed some 20Nm−2. Closing section
3.4, we discussed the results obtained and concluded that the tidal forces are
endurable for both crew and craft.

Chapter 4 on the extension of the realm of causality violation was split into
two sections, the first dealing with Kerr spacetime and the second with Kerr–
Newman spacetime. The domain of closed timelike ϕ–curves was termed Γ. In
the uncharged case, we calculated the range of Γ in the radial direction in (4.4)
and in the latitudinal direction in (4.8). On page 47, we proved that for any
value of a ∈ [0,M ], Γ is restricted radially to r ∈ [0,−M ], i.e. our calculations
yield for the maximal radial extension towards negative infinity |rmax| < M ,
which is of the order of the horizon radii r±—consult equation (2.8). For low
angular momenta, the latitudinal range may even reach the vicinity of the axis.
We give concrete graphs for several values of the angular momentum in Fig. 4.1
and 4.2. In the second section, we were occupied with the extension of Γ for
charged black holes. This part was not only mathematically more complicated,
but also physically less interesting, since the influence of the charge upon the
domain is only relevant for large Q. However, it might be interesting to take
note of the penetration of Γ into positive values of r in case of Q 6= 0.

A further project in this context would be the investigation whether we
could still access the domain of causality violation in case the singularity were
filled with matter, in analogy to what may be done in the Schwarzschild case.
The energy–momentum tensor T µν of this matter should, of course, satisfy the
usual conditions such as the positive definiteness of energy density, and having
a vanishing divergence, ∇µT µν = 0. If the matter would form a complete disk,
journeys into the domain Γ would no longer be possible.

In chapter 5 we introduced several quantities in order to assess timelike
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curves with t = −κϕ, spiralling within Γ and pointing towards the future. We
showed that these spirals, satisfying properties (5.1) to (5.3), are found in the
same domain Γ as the closed ϕ–curves. We started with the introduction of the
gain of time per revolution ∆t = 2πκ. The absolute value of the parameter κ,
as was proved in theorem 2, is to remain smaller than the absolute value of the
angular momentum a in case that the spirals have properties (5.1) to (5.2).

However, ∆t alone did not tell us much about the quality of the trajectory
for time travelling purposes. Hence, we related ∆t to the duration per revolution
in Γ, ∆s = 2π

√

gabẋaẋb. For reasons elaborated in chapter 3, we set Q = 0
subsequently. The duration per revolution as well as the time gain per duration
ratio w were proven to be most unfavourable in the equatorial plane, consult
Fig. 5.3 to 5.6 to this end. The total acceleration ℘ necessary to remain on the
intended trajectory turned out to be the most restricting quantity in chapter
6 and as we recognized there, spiralling in the equatorial plane offers a good
way to keep it low. Therefore, we still decided to devote the further analysis of
chapter 5 to the equatorial plane.

The results of the analysis in the equatorial plane show in Fig. 5.9 that ∆t
increases with decreasing r, whereas Fig. 5.10 gives testimony of the growth of
∆s towards the singular ring. To settle these “contradicting” arguments, we
investigated the radial dependence of the time gain per duration ratio w. Fig.
5.12 revealed that it has a minimum for an r ∈ [rmax, 0], provided that the fixed
parameters are defined in terms of their respective maximal values. It vanishes
at the edge of the allowed radial range. Of course, the more steeply we travel
back in time—i.e. the larger κ gets—, the better the ratio becomes.

The longitudinal relative accelerations—or the tidal accelerations as we were
inclined to term them—are independent of κ as can be seen from (5.13). We
argued with the aid of (5.14) and Fig. 5.1 and 5.2 that not even the maximal
tidal accelerations met at ϑ = π/2 pose a dangerous travelling hazard. In the
equatorial plane of an uncharged black hole, the tidal accelerations are given by
the same simple expression in (5.19) as we have calculated for the Schwarzschild
solution in section 3.4.2. Thus, it is independent of the angular momentum a.

In chapter 6 we calculated the mass of the gases exhausted in order to
hold course. This was completed by means of the Tsiolkovsky–equation (6.6),
which lead to the formula (6.8) indicating the relative mass exhaust µ necessary
per revolution to produce the needed acceleration ℘. This acceleration was
calculated aforehand in section 6.1, where (6.3) resulted.

Preceding to the closer analysis of the relative mass exhaust µ, we gave a
short account of propulsion systems. We investigated the latitudinal depen-
dence of the total acceleration ℘ as well as of the factor of the acceleration ℘
times the duration per revolution ∆s, since that is where the action is in (6.8).
We found out that especially for distances larger than, say, 0.2rmax from the
singularity, the calculatory effort of trying to minimize the exponential of (6.8)
is not justified by the modest profit of a factor two at the utmost which may
be drawn from that. For this reason, we focussed our considerations on the
equatorial plane.

Subsequent to the latitudinal dependence, we studied the influence of the
mass M of the black hole upon the energy consumption on the time travel.
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The total energy used to perform a complete revolution is, rather surprisingly,
independent of the mass. However, the energy loss per time gain goes with 1/M
and may thus be improved by a higher mass. The trajectory parameter κ should
remain rather small in order to save the craft’s fuel, since the acceleration ℘
times the duration per revolution ∆s decreases monotonically in the interval
[κ2, 0], where κ2 denotes the minimal value allowed for κ if the spirals have to
satisfy the properties (5.1) to (5.3). Unfortunately though, we have not been
able to prove this in a strict way. The factor ℘ · ∆s was found to diverge for
κ → κ2, meaning that an infinite amount of fuel would have to be burnt in case
our ambition were to follow a trajectory with κ = κ2.

Studying the radial dependence of ℘ · ∆s, we recognized its divergence for
r → rmax as well as for r → 0. The consequence of such a behaviour on parts
of the factor near the limits of Γ was its minimum for any intermediate value
r ∈ [rmax, 0], varying for different sets of parameters. Regarding the variation
of ℘ · ∆s resulting from the angular momentum, we argued that over large
parts of the permitted range of a, the factor remains well–behaved and nearly
constant. However, it diverges for a → 0, which would shatter our prospect
for finding a passage into EKN− anyway, as the singularity would then no
longer form a Kerr ring singularity, but a Schwarzschild point singularity. In
this case, no analytical extension into negative values of r may be pasted to the
“Schwarzschild–patch” and no domains of causality violation emerge.

In the last section of chapter 6, we had to admit that the time travel even-
tually is rendered impossible due to an extremely high energy consumption.
Given an exhaust velocity common to contemporary state–of–the–art propul-
sion systems, the tank of the spacecraft would be empty within a time of the
order ∼ 10−15s. There has been no way of solving this energy problem when
insisting on completing one full revolution in Γ. If we content ourselves with
spiralling on the curve for less than one revolution, we may concentrate on
achieving a certain time gain and then quit for the purpose of refuelling. The
energy consumption per time gain ratio is proportional to 1/M and may thus
be tuned by choosing a black hole with a mass as large as possible. However,
any known—or even conceivable—black hole will not even approach what is
required in terms of masses if time travel were to be realistic. The mass re-
quired should lie above 1022M�. Therefore, the time travel envisioned remains
nothing but an intellectual game. 2
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Appendix A

Units

We would like to add a few remarks concerning the units used in this essay. On
the one hand, we calculate in natural units where c = G = µ0 = 1. This shortens
many expressions considerably. As a consequence, we express every quantity
in units of meters mz where z ∈ Z. On the other hand, for any numerical
calculations, the SI–system is applied. It has the undoubted advantage of being
a more comprehensible approach to numerical quantities. Its fundamental units
are meters m, seconds s, kilograms kg, and Ampères A. The fundamental
constants of nature have the following numerical values in the SI–system:1

c = 299 792 458ms−1,

G = 6.672 59(85) × 10−11m3kg−1s−2,

µ0 = 4π × 10−7NA−2.

A combination of these factors will convert expressions from one system to the
other. This conversion can thus be formalized,

ma [cxGyµz
0] = mbsckgdAe,

where a, b, c, d, e, x, y, z ∈ Q. The square brackets symbolize the units of the
quantities embraced and no numerical values whatsoever. The exponentials
x, y, z are uniquely given by a, b, c, d, e. These considerations lead us to Figure
A.

Since the metric ds2 is a sort of “quadratic distance” and the coordinates t
and r are measured in m according to Figure A, the units of the metrical tensor
(in Boyer–Lindquist coordinates) are given by

[gtt] = [gtr] = [grr] = 1,
[gtϕ] = [gtϑ] = [grϕ] = [grϑ] = m,

[gϕϕ] = [gϕϑ] = [gϑϑ] = m2.

1All numerical data from [38]



Quantity Acronym Natural Conversion SI Units

Units Factor

Distance r m 1 m

Time t m c−1 s

Mass M m G−1c2 kg

Angular Momentum a m c m2s−1

J m2 G−1c3 kgm2s−1

Charge Q m (Gµ0)
−1/2c C = A s

Force F 1 G−1c4 N = kgms−2

Energy E m G−1c4 J = kgm2s−2

Power P 1 G−1c5 W = kgm2s−3

Figure A.1: Conversion of physical quantities between natural and SI-units.



Appendix B

Advanced and Retarded

Coordinates

Sometimes it will prove useful to carry out the calculations in an Eddington–
Finkelstein type of coordinates. Therefore, we introduce the advanced (AKN)
and retarded Kerr–Newman (RKN) coordinates through the following transfor-
mations:

t = u + X(r), ϕ = ξ + Y (r) (B.1)

for the retarded and

t = v − X(r), ϕ = η − Y (r) (B.2)

for the advanced coordinates, where

X ′(r) =
r2 + a2

∆
,

Y ′(r) =
a

∆
.

A simple integration yields:

X(r) = r − A log |r − r−| + B log |r − r+|, (B.3)

where

A =
2m2 − Q2

r+ − r−
− m > 0,

B =
2m2 − Q2

r+ − r−
+ m > 0,

and

Y (r) =
a

r+ − r−
log |r − r+

r − r−
|. (B.4)
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To complete the transformation of the metric (2.4) from the Boyer–Lindquist
to the retarded and advanced Kerr–Newman coordinates, we compute the cor-
responding differentials:

dt − a sin2 ϑdϕ = du − a sin2 ϑdξ +
Σ

∆
dr,

adt − (r2 + a2)dϕ = adu − (r2 + a2)dξ,

dt − a sin2 ϑdϕ = dv − a sin2 ϑdη − Σ

∆
dr,

adt − (r2 + a2)dϕ = adv − (r2 + a2)dη.

Finally, we obtain for the transformed line element

ds2 =
∆

Σ
(du − a sin2 ϑdξ)2 + 2(du − a sin2 ϑdξ)dr

−sin2 ϑ

Σ
[adu − (r2 + a2)dξ]2 − Σdϑ2, (B.5)

ds2 =
∆

Σ
(dv − a sin2 ϑdη)2 − 2(dv − a sin2 ϑdη)dr

−sin2 ϑ

Σ
[adv − (r2 + a2)dη]2 − Σdϑ2, (B.6)

and for its potential

Aµdxµ =
Qr

Σ
(du − a sin2 ϑdξ) +

Qr

∆
dr,

Aµdxµ =
Qr

Σ
(dv − a sin2 ϑdη) +

Qr

∆
dr.

(B.7)

As can easily be derived, we have

det gµν = −Σ2 sin2 ϑ. (B.8)

This metric is regular everywhere except for Σ = 0 or ϑ = 0, π. The latter is
the ever arising coordinate singularity, whereas the former is the real McCoy.



Appendix C

Affine Connection of

Kerr–Newman Spacetime

Leaving the familiar field of linear theories and the trusted global inertial sys-
tems of the Newtonian physics, we are in urgent need of providing a formal
construction which enables the astrophysicist to compare physical quantities
in distant places. Such a means is put at disposal by the components of the
affine connection which establishes a connection between adjoining points of the
respective spacetime. Parallel (not equal!) vectors are unambiguously propa-
gated from one point to its neighbour by means of the affine connection. For
this reason, it is vital to know the components of the affinity for the concerned
spacetime. As it is a general procedure in physics to postulate a metric affine
connection—where the components are equal to the Christoffel symbols of the
geodesic equation—, we may compute these components in the following man-
ner:

Γρ
µν =

1

2
gρκ (gκν,µ + gκµ,ν − gµν,κ) (C.1)

Generally, however, this tedious calculation may be considerably shortened. If
we fall back to the variational principle using the action

S =
1

2

∫

dλgµν ẋµẋν

with the Lagrangian

L =
1

2
gµν ẋµẋν , (C.2)

the computational effort decreases significantly. Subsequently, we decompose
the Kerr–Newman metric in (C.2) for a more convenient use,

L =
1

2
gabẋ

aẋb +
1

2
γαβẋαẋβ, (C.3)

where Latin letters indicate sums over t and ϕ whereas α and β run over the
other two coordinates r and ϑ and γαβ designates the induced metric in this
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two–dimensional subspace. This economic splitting is possible since there are
no mixed terms between the two groups of Boyer–Lindquist coordinates. Now,
(C.3) is inserted in the Euler-Lagrange equations

∂L
∂xµ

− d

dλ

∂L
∂ẋµ

= 0. (C.4)

Bearing in mind that the tensor product of a symmetrical tensor with an an-
tisymmetrical one always vanishes, and that therefore in some terms of (C.4)
only the symmetrical parts matter, an easy calculation yields

ẍa + 1
2gab(gbc,α + gbα,c)ẋ

cẋα = 0,

ẍα − 1
2γαβgab,β ẋaẋb + 1

2γαβ(γβρ,σ + γβσ,ρ − γρσ,β)ẋρẋσ = 0,

where ρ and σ also run over the r and ϑ coordinates of the Boyer–Lindquist
metric. Some of the derivatives of the metric vanish, and the components of
the affine connection can easily be read out of these four equations:

Γa
cα =

1

2
gabgbc,α,

Γα
ab = −1

2
γαβgab,β , (C.5)

Γα
ρσ = γαβ(γβρ,σ + γβσ,ρ − γρσ,β).

If written out explicitly, we obtain the list of all non–vanishing components,

Γt
tr =

r2 + a2

∆Σ2

[

M
(

r2 − a2 cos2 ϑ
)

− rQ2
]

,

Γt
tϑ = −a2 sinϑ cos ϑ

Σ2

(

r2 + a2 − ∆
)

,

Γt
ϕr = −a sin2 ϑ

∆Σ2

[(

M
(

r2 − a2 cos2 ϑ
)

− rQ2
) (

r2 + a2
)

+ rΣ
(

r2 + a2 − ∆
)]

,

Γt
ϕϑ =

a3 sin3 ϑ cos ϑ

Σ2

(

r2 + a2 − ∆
)

,

Γϕ
tr =

a

∆Σ2

[

M
(

r2 − a2 cos2 ϑ
)

− rQ2
]

,

Γϕ
tϑ = −a cot ϑ

Σ2

(

r2 + a2 − ∆
)

,

Γϕ
ϕr = − 1

∆Σ2

[(

M
(

r2 − a2 cos2 ϑ
)

− rQ2
)

a2 sin2 ϑ − rΣ
(

∆ − a2 sin2 ϑ
)]

,

Γϕ
ϕϑ =

cot ϑ

Σ2

[

Σ
(

∆ − a2 sin2 ϑ
)

+
(

r2 + a2
) (

r2 + a2 − ∆
)]

,

Γr
tt =

∆

Σ3

[

M
(

r2 − a2 cos2 ϑ
)

− rQ2
]

,

Γr
tϕ = −∆a sin2 ϑ

Σ3

[

M
(

r2 − a2 cos2 ϑ
)

− rQ2
]

,

Γr
ϕϕ = −∆sin2 ϑ

Σ3

[

rΣ2 − a2 sin2 ϑ
(

M
(

r2 − a2 cos2 ϑ
)

− rQ2
)]

,
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Γr
rr = − 1

∆Σ
[r(∆ − Σ) + MΣ] ,

Γr
rϑ = −a2 sinϑ cosϑ

Σ
,

Γr
ϑϑ = −∆r

Σ
,

Γϑ
tt = −a2 sinϑ cosϑ

Σ3

(

r2 + a2 − ∆
)

,

Γϑ
tϕ =

a sinϑ cos ϑ

Σ3

(

r2 + a2
) (

r2 + a2 − ∆
)

,

Γϑ
ϕϕ = −sinϑ cos ϑ

Σ3

[

∆Σ2 +
(

r2 + a2
)2 (

r2 + a2 − ∆
)

]

,

Γϑ
rr =

a2 sinϑ cos ϑ

∆Σ
,

Γϑ
rϑ =

r

Σ
,

Γϑ
ϑϑ = −a2 sinϑ cosϑ

Σ
. (C.6)

With the label (C.6), we imply the entire list.
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