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Abstract

We investigate the fate of determinism in general relativity (GR), comparing the philosopher’s
account with the physicist’s well-posed initial value formulations. The fate of determinism is
interwoven with the question of what it is for a spacetime to be ‘physically reasonable’. A central
concern is the status of global hyperbolicity, a putatively necessary condition for determinism
in GR. While global hyperbolicity may fail to be true of all physically reasonable models, we
analyze whether global hyperbolicity should be (i) imposed by fiat; (ii) established from weaker
assumptions, as in cosmic censorship theorems; or (iii) justified by beyond-GR physics.

1 Introduction

Two foundational questions one might ask about any physical theory bring out particularly subtle
and interesting features of general relativity (GR). First, is GR a deterministic theory? Second, do
all mathematical models of the theory represent physically possible spacetimes? There is a tight
connection in GR between these two questions, i.e., between an assessment of what spacetimes are
physically possible or reasonable and of whether determinism holds. It is this connection that we
explore in this essay.

Determinism holds if specifying the state of a system uniquely fixes its dynamical evolution.
Spacetimes with exotic causal structure raise a distinctive set of questions regarding the status of
determinism in GR, differing from those raised by the (in)famous hole argument. Below we will
bypass the hole argument by assuming that the existence of a unique solution ‘up to diffeomor-
phism invariance’ is sufficient for determinism in GR. We will consider cases where uniqueness fails
regardless of the interplay between metaphysics and diffeomorphism invariance.1 In the cases we
are interested in, fully specifying the state of the universe within a spacetime region fails to fix the
maximal extension of the region. Determinism fails in the straightforward sense that everything
within the region is compatible with multiple extensions beyond it. Even though the state may in
some sense locally determine a unique solution, it fails to fix a unique global, maximal solution.

Our analysis runs parallel to recent discussions of determinism in Newtonian particle mechanics.
Philosophers have considered unusual cases illustrating several distinct ways in which determinism
can fail in Newtonian mechanics. For example, if we allow force functions that are not continuously

∗We thank Gordon Belot, Juliusz Doboszewski, JB Manchak, the audience at the PSA2010 in Montreal, the New
Directions group at Western University, and two anonymous referees for their valuable feedback and exchanges. We
acknowledge partial support from the John Templeton Foundation (grants 61048 and 61387).

1None of this is to deny the interest of the questions raised by the hole argument Earman and Norton (1987); see
also Stachel (2014) for a recent review. For reasons that will become clear below, we are sympathetic to the position,
defended recently by Weatherall (2018), that we should always take mathematical models to be only individuated
‘up to isomorphism’ for the relevant mathematical objects.
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differentiable, Newtonian dynamics admits multiple solutions for the same initial data.2 But are
these ‘physically reasonable’ forces, falling within the domain of applicability of Newtonian theory?
Similarly, many solutions of Einstein’s field equation (EFE) have unusual mathematical features
that seem unreasonable in some sense, and apparently do not describe the actual universe or a
region of it. How do we decide to treat some solutions as beyond the pale? As with Malament
(2008)’s take on whether Newtonian mechanics is deterministic, our interest is in clarifying the
basis for such judgments rather than rendering a verdict on determinism.3

Making the world safe for determinism in GR requires substantive claims regarding the global
structure of space and time along with constraints on the permissible types of matter. The condi-
tions needed to reject some solutions as ‘unphysical’ are quite different in character than the local
dynamical laws. Although the content of these conditions is clear, their status is not. We will
discuss three different approaches below that reflect different reasons for placing tighter constraints
on physical possibility than those implied by EFE alone. The first approach offers a modern tran-
scendental argument: although GR dispenses with much ‘background structure’, there are still
some global conditions on the spacetime manifold that are prerequisites for sensible physics. In
this spirit, conditions closely tied to determinism may turn out to be necessary in order for GR
to get any traction at all and then be parlayed into an argument to the conclusion that GR is
deterministic. The second approach shifts the goal posts: rather than attempting to prove de-
terminism in an entirely general sense, cosmic censorship theorems aim to show that a suitably
restricted subset of solutions satisfies a stability property. Since stability under small perturbations
is arguably a property of ‘physically reasonable’ spacetimes, this approach offers a second avenue
from physical reasonableness to determinism. Finally, a third approach emphasizes that our as-
sessment of ‘physical possibility’ must take into account the limits of applicability of classical GR
and the implications of other theories. We briefly discuss the possibility that a successor theory
may rule out the failures of determinism allowed in classical GR, and the related possibility that
global conditions may serve as preconditions for the possibility of formulating quantum field theory
(QFT).

The present analysis bears on an important debate in the foundations of physics. One side in
this debate considers determinism to be a basic principle crucial to physicists. Advocates of this
stance often take it to be part of clarifying the content of a theory to see what is required to satisfy
determinism. The other side insists that there can’t be such an a priori principle and typically
treats the various ways of insuring determinism as a possibly illegitimate exercise. Our purpose
here is not to argue for a position in this debate, but to clarify the distinctive issues that arise in
GR. We agree with Earman (2004) that those who expect a simple answer from modern physics to
the question of whether the world is deterministic or not will be frustrated, as we have also argued
elsewhere (Earman et al. 2009; Smeenk and Wüthrich 2011; Wüthrich 2011). The foundations of
modern physics are simply too rich for such a simple-minded expectation to be borne out.

We will start in §2 by fixing the terminology and by discussing the implications of moving
from the parabolic partial differential equations of pre-relativistic physics to the hyperbolic ones in
relativity. In §3, we develop the conception of determinism in the context of GR. In §4, we consider
whether global hyperbolicity is necessary or sufficient as a condition for determinism in GR. In
§5, §6, and §7, respectively, we will discuss three approaches to conceiving of the status of global

2Several recent discussions have focused on a simple case: a particle moving along Norton’s dome (Norton 2003),
a constraint surface that does not have a well-defined second derivative at its apex. A similar pathology arises for
the following force function: f(r) = m

√
`− r for r ≤ `, and = 0 for r > `. Because f(r) is not differentiable at

r = `, Newtonian dynamics fails to admit a well-posed IVF. See Fletcher (2012) for a thorough review, which notes
in passing that the provenance of these problems goes back to Poisson in the early 19th century.

3Throughout this paper, we draw on the seminal survey of related topics in Earman (1995).
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hyperbolicity as a condition (i) to be stipulated a priori, (ii) to be proved from weaker assumptions
within GR, and (iii) to be confirmed — or infirmed — from physics beyond GR. Brief conclusions
follow in §8.

2 Hyperbolic PDEs and Relativity

Let us start from the idea of determinism as requiring that suitably specifying the physical state of
a system in some region of spacetime S uniquely fixes, through the dynamics, the state throughout
a larger region S′ (S ⊂ S′) — in its strongest form, throughout the entire spacetime. Physical
theories typically describe dynamical evolution using partial differential equations (PDEs). In this
context, the status of determinism translates into the question of whether the system of PDEs
specifying dynamical evolution, supplemented with some further input (information regarding the
state of the system in S), yield a unique solution throughout S′. What form the input must take
to lead to a uniquely solvable problem, and the qualitative features of the solutions, differs among
the three classes of PDEs — hyperbolic, parabolic, and elliptic. Over the course of the twentieth
century physics has shifted to using hyperbolic PDEs to represent fundamental interactions, with
profound consequences for the status of determinism, as the following considerations illustrate.4

One challenge to determinism in Newtonian physics stems from the fact that the relevant
equations do not place an upper limit on signal propagation speed.5 (For Galilean invariant laws,
one can always choose an inertial reference frame with respect to which a given particle has an
arbitrarily high velocity.) This raises the possibility of ‘space invaders’: particles that ‘fly in from
infinity’ and disrupt an otherwise well-behaved system. Xia (1992) showed that this possibility can
be realized in a system of 5 point particles interacting through Newtonian gravity. The particles
can be arranged such that their trajectories all approach a given time slice asymptotically: the
particles either show up ‘out of nowhere’, or, considering the time reversed trajectories, ‘fly off to
infinity’ within a finite time. In light of such behavior, the region of spacetime S appropriate for
setting up a uniquely solvable problem has to include the boundaries of the system over time –
specifying, for example, that the number of particles remains fixed. Parabolic PDEs, such as the
heat equation, similarly require specifying boundary values to find a unique solution. For so-called
initial-boundary value problems, the region S where input data need to be supplied consists of a
region Σ at a given time along with its boundary over time (see figure 1 for an example).

Hyperbolic PDEs have strikingly different qualitative behavior that is a boon to determinism.
The familiar wave equation, ∂2xu = ∂2t u, exhibits features that hold for this general class of PDEs.
Solutions are ‘localized’ in that waves produced by a disturbance propagate at finite speed, along so-
called characteristic curves, in contrast to the infinite-speed propagation of effects allowed by both
parabolic and elliptic PDEs. The appropriate surface for specifying the input data is a spatially
extended region S at a given time. As a result of the finite propagation speed, there are non-trivial
domains of dependence — roughly speaking, the region of spacetime that can be connected to S
by signals going at or below the wave propagation speed. For any point falling within the domain
of dependence, all waves propagating to or from the point must ‘register’ on S. The state of the
system throughout this larger region is fixed by the wave equation along with the initial data on S.
There is no need to supplement the data on S with conditions regarding how the solution behaves
‘on the edge’ of S or at other times. Maxwell’s equations share these features of the wave equation

4Obviously parabolic and elliptic PDEs are still used in a wide variety of modeling contexts. Here we follow
Geroch (1996), who remarks that “A case could be made that, at least on a fundamental level, all the ‘partial
differential equations of physics’ are hyperbolic — that, e.g., elliptic and parabolic systems arise in all cases as mere
approximations of hyperbolic systems.”

5Cf. Earman (1986) and Earman (2004).
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Figure 1: In this example of an initial-boundary value problem, the region of input data consists
of finite region at a given time Σ and its cylindrical boundary over time, T .

(albeit with additional complications due to gauge freedom). Taking the causal structure of these
equations to be universal rather than characteristic of electromagnetism leads to special relativity.
Minkowski spacetime provides a natural setting for formulating hyperbolic PDEs, as the causal
structure of the spacetime reflects the existence of a maximum propagation speed.

We need to introduce some technical machinery to make this more precise. A spacetime is an
ordered pair 〈M, gab〉, where M is a connected four-dimensional differentiable manifold without
boundary, and gab is a Lorentz-signature metric defined everywhere onM that satisfies EFE – there
is a stress-energy tensor Tab and value of the cosmological constant Λ such that Rab− 1

2Rgab−Λgab =
8πTab. This last clause only has some bite if there are further restrictions on Tab. Some results
regarding causal structure follow without placing any constraints on Tab. Most of the discussion
below will focus on either exact solutions, with a specific choice of Tab representing particular
type(s) of matter fields, or ‘generic’ solutions for which Tab satisfies constraints such as the energy
conditions (see also Malament 2012, 159-161).

The metric gab fixes a light cone structure in the tangent space Mp at each point p ∈ M. A
tangent vector ξa ∈ Mp is classified as timelike, null, or spacelike, according to whether gabξ

aξb >
0,= 0, or < 0 (respectively). Geometrically, the null vectors ‘form the light cone’ in the tangent
space with the timelike vectors lying inside and the spacelike vectors lying outside the cone. The
classification of tangent vectors extends to curves, and for a time orientable spacetime, which
admits a globally consistent designation of the ‘future’ lobe of the null cone, one can further define
future-directed timelike (causal) curves as those whose tangent vectors fall within (on or within)
the future lobe at each point.

The light cone structure and classification of curves leads directly to more general characteri-
zations of the causal structure, including domains of dependence. The chronological past I−(p) is
defined as the set of all points in M that can be reached from p by past-directed timelike curves
(analogously for the chronological future I+(p)). For an achronal surface V , there are no points
p, q ∈ V such that p ∈ I−(q). The edge of an achronal surface V is the set of points p such that
every open neighborhood O of p includes points in I+(p) and I−(p) that can be connected by a
timelike curve that does not cross V . A global time slice of a spacetime 〈M, gab〉 is a closed, achronal
hypersurface Σ ⊂ M with no edges. The future domain of dependence D+(Σ) for a global time
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slice Σ includes the points inM such that every past inextendible causal curve through p intersects
Σ (analogously for the past domain of dependence D−(Σ)).6 A spacetime 〈M, gab〉 is globally hy-
perbolic just in case there is a slice Σ such that the domain of dependence D(Σ) := D+(Σ)∪D−(Σ)
is the entire spacetime, i.e., D(Σ) =M.

With these definitions in place, the contrast between Newtonian physics and special relativity
can be stated simply: input data on a time slice Σ in Newtonian spacetime gets us nowhere, in
the sense that D+(Σ) = D−(Σ) = Σ, whereas Minkowski spacetime allows for the possibility of
non-trivial domains of dependence. Whether this possibility is realized depends on whether the
matter fields being studied respect the causal structure. In particular, matter fields that satisfy
the dominant energy condition do not propagate outside the light cone.7 Proofs that matter fields
admit a well-posed initial value formulation (IVF) in Minkowski spacetime depend on what are
called ‘energy estimates’. Consider slices Σ1 and Σ2, at a later time, and the regions S ⊂ Σ1 and
T = D+(S) ∩ Σ2. For matter fields satisfying the dominant energy condition, the field equations
imply bounds on the energy associated with initial data on S and T .8 To establish uniqueness of
a solution to a linear wave equation for specified initial data, schematically, suppose for reductio
that there are two solutions with the same initial data on S. Consider a third solution defined as
their difference. The energy of this third solution on S is zero, by hypothesis, but it follows from
the energy bounds that this quantity cannot differ from zero on T for an arbitrary later slice Σ2.
Hence the two solutions must be identical within D+(S). Energy estimates also play an essential
role in establishing the other two properties required for a well-posed IVF, namely that solutions
exist and vary continuously with the initial data.9 For linear wave equations, with suitable initial
data specified on a time slice Σ (aka a Cauchy surface), D(Σ) = M.10 Hence the transition to
Minkowski spacetime supports the claim that fundamental physics satisfies determinism.

The consequences of the further step from special relativity to GR are more challenging to assess.
To represent the gravitational field via spacetime geometry, the light cone structure of Minkowski
spacetime has to be demoted from global to local status. Modern presentations of GR sometimes
generalize this claim: the mathematical structures typically treated as global, background features
of spacetime prior to GR should be ‘stripped away’, leaving only a bare differentiable manifold. In
GR the causal structure is itself dynamical rather than fixed, leaving us unable to appeal to various
background structures used in the analysis of other PDEs. A further source of complexity is the
non-linearity of EFE. Generally speaking, for non-linear field equations ‘good’ initial data may lead
to singularities, where the derivatives ‘blow up’ and existence and uniqueness results fail within
a finite time — as illustrated by the formation of shock fronts in fluid mechanics (Christodoulou
2007). This possibility poses a general obstacle to understanding the ‘global’ behavior of solutions
even if the dynamics admits a well-posed IVF ‘locally’ (close to the initial data surface, in a precise
sense). In addition, although we noted above that we will set aside issues related to the hole

6A past inextendible causal curve γ(s) : I →M does not have a past endpoint, namely a point p ∈ M such that
for every neighborhood O of p, there is a value s0 ∈ I such that γ(s) ∈ O for all values s < s0.

7A matter field with stress-energy tensor Tab satisfies the dominant energy condition if Tabξ
aξb ≥ 0 and T a

b ξ
b is

timelike or null, given an arbitrary timelike vector field ξa at any point in M (see, e.g. Malament 2012, 144f).
8The energy over a spacelike region S is obtained by integrating Tabξ

aξb over S, where ξa is a timelike vector
field normal to S. Often the ‘energy’ used in PDE techniques does not, however, correspond directly to a physically
meaningful quantity.

9See §7.4 of Hawking and Ellis (1973) for a proof that quasi-linear (linear in the highest derivatives), second-order
hyperbolic systems admit a well-posed IVF. The dominant energy condition is not necessary: in some cases when Tab

fails to satisfy this condition, it still satisfies energy inequalities sufficient to prove that there is a well-posed IVF.
10The proofs for linear wave equations have been generalized to some non-linear systems, but it is much more

challenging to prove global existence theorems for these cases and results are limited. Recent work has also focused
on proving theorems given weaker assumptions about the regularity of the initial data and solution spaces (see Rendall
2008; Ringström 2009).
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argument, the diffeomorphism invariance of GR leads to complications in providing an IVF. One
complication resembles that faced by theories with gauge freedom, such as Maxwell’s equations:
the initial data cannot be freely specified but must satisfy a set of constraint equations, elliptic
PDEs. All existing proofs of the existence and uniqueness of solutions for EFE utilize additional
structures or coordinate conditions, rather than employing a framework which maintains manifest
diffeomorphism invariance throughout. Techniques called hyperbolic reduction, for example, can
be employed to derive a system of hyperbolic PDEs from EFE. As with Maxwell’s equations, these
have to be accompanied by elliptic constraint equations, and one has to furthermore ensure that
the constraints propagate (that is, that they continue to hold under the ‘time evolution’ equations
extracted from EFE). Yet other formulations reduce the EFE to a system of parabolic equations,
or lead to constraint equations that are ordinary differential equations (as in the characterisitic
initial value problem).11

These aspects of GR combine to make the question of determinism so intriguing. There is much
more work in mathematical physics needed to elucidate the structure of second-order non-linear
PDEs such as EFE. An understanding of the status of determinism in GR comparable to what we
have achieved in other physical theories depends on the outcomes of this work. But even as we
await resolution of these issues, we might aim as a modest first step to distinguish between failures
of determinism that arise due to what looks like a mistake in mathematics, namely stripping away
structures that turn out to be essential to formulating physics, and those that reflect underlying
features of the dynamics, such as the formation of ‘naked singularities’.

3 Defining Determinism

With the terminology and the background in place, let us consider various proposals for defining
determinism in the context of GR. Budic and Sachs (1976, 22) define a spacetime to be deterministic
just in case ∀p ∈M, every past-endless causal curve which intersects I+(p) also intersects I−(p).12

As Budic and Sachs themselves admit, this is a very restrictive definition; they even prove that no
asymptotically flat spacetime is deterministic in their sense. Among many other important models,
it classifies Minkowski spacetime as non-deterministic. However, they defend their characterization
as adequate because it captures the intuitive sense that in deterministic spacetimes, “each event
can, in principle, predict from its own past everything [i.e., its chronological future], not merely its
own future” (ibid., 23).

We do not share this intuition. In fact, we find it curious that anyone would think that the
past of a single event would suffice to fix its complete (chronological) future in a dynamical system
where effects propagate at finite speed, i.e., in a system described by hyperbolic PDEs! Our
position here is supported by results which have become known under the label of ‘observational
indistinguishability’, to be discussed in §5, which establish that the past of an event does not,
quite generally and under relatively mild assumptions, fix the rest of the spacetime. Furthermore,
the proposal blurs the crucial distinction between predictability and determinism.13 On our view,
the fate of determinism does not depend on whether the input data needed to specify a uniquely
solvable problem are accessible to an embedded observer.

The conception of determinism we are seeking instead follows the standard Laplacian notion,
at least in spirit.14 The Laplacian notion encodes a sense of metaphysical determination and is

11For further discussion of the different formulations, see, e.g., Friedrich and Rendall (1999); Ringström (2009).
12A causal curve is past-endless just in case there is no event p ∈M such that going in the past direction, for every

neighbourhood U(p) of p, the curve enters and remains in U .
13This is not to deny the interest of questions regarding predictability. See, e.g., Geroch (1977).
14Butterfield (1989) offers a relativistic conception of determinism, further generalized by Doboszewski (2019, 11).
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deprived of epistemic undertones. It captures the idea that given the state of the physical system
at stake at a time, the laws of nature as encoded in the theory describing the system uniquely
determines the state of the system at all other times. More precisely, for a globally deterministic
theory, for appropriate initial data specified within an appropriate spacetime region S there is a
unique solution of the relevant equations (including EFE and equations governing any coupled
matter fields) through the entire spacetime (D(S) =M). A more rigorous definition would require
filling in the two instances of ‘appropriate’ in our characterization. For vacuum solutions, the initial
data for gravitational degrees of freedom typically include the induced three-dimensional metric hab
and the extrinsic curvature kab on a three-dimensional hypersurface.15 More generally, the form
initial data must take in order to be ‘appropriate’ will depend on the theory of matter to be used.16

For hyperbolic PDEs in special relativity, initial data can be assigned to spacelike hypersurfaces of
constant time, so a natural candidate for the ‘appropriate’ region is the relativistically next best
thing to a moment of time — that is, a global time slice Σ. (But all time slices are not created
equal. We further need to rule out surfaces such as an achronal surface Σ for which ∃p : Σ ⊂ I−(p)
in Minkowski spacetime; for such a surface, D(Σ) is not the entire manifold, but this reflects a poor
choice of Σ.)

A theorem due to Choquet-Bruhat and Geroch (1969) establishes that appropriate initial data
(Σ, hab, kab), specified on a global time slice Σ, determine a unique (up to isometry), maximal
globally hyperbolic development, a solution to vacuum EFE. If matter fields are included, the
initial data will consist of two types of information, specifying the state of the spacetime geometry
and the matter fields, respectively, and the dynamical equations at play will then include EFE as
well as the dynamical equations of the matter degrees of freedom. It is generally expected that
matter fields that have a well-posed IVF in special relativity also have one in this context.17 The
restriction of the result to the globally hyperbolic development is as essential as it is unsurprising:
regions that are not globally hyperbolic fall outside of D(Σ) by definition. The solution determined
by the initial data is the maximal globally hyperbolic development of the data, but it is not the
maximal development simpliciter (a point we will return to below).

We should pause to note a subtle contrast between the treatment of an IVF for general relativity
and for other PDEs. The background spacetime structure is not given ab initio, and we currently
lack mathematical tools that would allow for a fully diffeomorphism-invariant treatment. What
we have instead are a variety of methods for reducing the full EFE to a system of constraint
and evolution equations. Choquet-Bruhat discovered that existence and uniqueness results from
hyperbolic PDEs could be extended to EFE, which then take the form of a non-linear wave equation,
given initial data (Σ, hab, kab) satisfying constraint equations. But this data set (Σ, hab, kab) has to
be regarded as defined on an ‘abstract’ space — we cannot, without begging the question, assume
that Σ fits within a solution. The existence proof establishes that there is an embedding map

Although we heartily endorse Doboszewski (2019)’s recognition that there are a variety of further conditions that
might be imposed in defining determinism, we hold that there is still a core conception underlying these various
modifications.

15Provided that they satisfy the Gauss-Codacci constraints. Although the most familiar IVF for EFE uses initial
data of this type, there are other possibilities. (We will mention one of these below; see Sarbach and Tiglio (2012)
for discussion and further references.)

16For typical field equations, the initial data include the field values and their first derivatives (with respect to the
‘time’ coordinate orthogonal to the surfaces S). There are further choices to be made regarding what function space
the initial data belong to, based on the degree of regularity required (for both metric and matter degrees of freedom).
Oddly, proofs of uniqueness require a higher degree of differentiability than the existence results.

17The proof mentioned in footnote 9 carries over to the coupled Einstein-matter field equations for many types of
matter fields, granting some plausible assumptions regarding the coupling between the matter fields and gravitational
degrees of freedom. But there are numerous open questions, related for example to the treatment of fluid bodies and
the Einstein-Boltzmann equation. See Rendall (2008) for further discussion.
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φ : Σ → M such that hab, kab appropriately match the spacetime metric gab, where 〈M, gab〉 is a
solution to EFE. Turning to uniqueness, we can further ask whether the same initial data set can
be embedded in two distinct solutions. The proof of uniqueness establishes, roughly put, that any
such pair of solutions must be extensions of one underlying solution (see, e.g., Ringström 2009).
This apparatus implies a direct response to the hole argument. What these arguments establish
is often called ‘geometric uniqueness’ in the mathematical physics literature, to indicate that an
equivalence class of spacetimes has the ‘same geometry’. But it is clear from the way that existence
and uniqueness results are formulated that we cannot even pose a threat to determinism without
assuming some further structure. These results establish the existence of embedding maps between
manifolds (an abstract ‘initial data’ space and solutions to EFE), and in this context the solutions
are only individuated up to isomorphism. There are no grounds to draw a further distinction
between ‘hole diffeomorphs’.

Applied mathematicians usually impose a third condition to have a well-posed initial value
formulation: the solutions must depend continuously, in a sense to be made precise, on the initial
data.18 Philosophers have for the most part not equated determinism with the existence of a
well-posed IVF because they reject this third condition. Several alleged failures of determinism
depend on exact specification of a set of initial conditions. In Xia’s ‘space invaders’ example
mentioned above, the motion of the five particles has to be choreographed with exquisite precision
such that they all fly off to infinity. More precisely, the set of initial conditions that lead to the
desired behavior is Lebesgue measure zero in the space of initial data (Xia 1992). Initial conditions
‘arbitrarily close’ to those leading to the space invaders trajectory have quite different dynamical
behavior, violating the continuity requirement.19

This third condition raises a number of more subtle questions than the requirements of existence
and uniqueness. In particular, the assessment of continuity and stability depends upon the topology
assigned to the space of initial data and the solution space. Yet the grounds for choosing the
topology are not always clear. Fletcher (2016) considers stability questions regarding full spacetimes
rather than initial data — that is, in terms of a topology on the space of Lorentzian metrics over a
fixed manifold. He argues that no proposed candidate for a ‘canonical’ topology on this space yields
intuitively correct verdicts on convergence of sequences, continuity of families of metrics, and the
stability or genericity of global properties. He advocates instead a version of reflective equilibrium,
according to which the choice of topology is guided by contextual features of specific applications.
For the initial value problem, the context requires a characterization of the initial data and a
choice regarding what counts as a solution to the PDE.20 These decisions may limit the choice of
topology in specific applications, perhaps even leaving us with only one viable candidate, although
the physical significance of the topology and the justification for these choices deserves further
scrutiny. Despite these open foundational questions, the third requirement strikes us as a plausible
candidate for a principle that is required for successful applications of differential equations. We are
finite epistemic agents, unable to determine initial conditions, or carry out the numerical analysis

18A map γ : X → Γ between initial data X and solutions Γ is continuous if the inverse images under γ of all open
sets in Γ are open sets in X . Intuitively, points that are nearby in X are mapped into nearby points in Γ, such that
small changes in initial data lead to small changes in the solution.

19Xia obtains the initial conditions through a Cantor-set like construction: for each possible interaction among the
particles, eliminate the initial conditions that do not lead to the desired trajectory. Iterating this process leads to a
measure zero set of initial conditions, with trajectories confined to the unstable submanifold corresponding to space
invaders behaviour.

20The initial data and solutions are typically required to be elements of Sobolev spaces (spaces of functions whose
partial derivatives up to some specified order are square integrable). The relationship between the function spaces for
the initial data and solutions are partially dictated by the PDEs themselves, and partially by the choice of desirable
properties of solutions.
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of PDEs, with indefinite precision. A stability requirement is thus essential to using PDEs in the
study of natural phenomena. Most philosophers, by contrast, seem to allow for indefinitely precise
individuation of solutions in constructing instances of indeterminism. On this view, the existence of
a well-posed IVF is sufficient for determinism, but it is not necessary. In any case, we will follow the
philosophical tradition below in equating determinism with only the first two conditions of an IVF
— the existence and uniqueness of solutions to the relevant equations — while also acknowledging
the relevance of stability considerations.

4 Global Hyperbolicity

The seminal result due to Choquet-Bruhat and Geroch mentioned above depended on identifying a
property of spacetimes necessary to complete the proof: global hyperbolicity.21 For such spacetimes,
this result establishes that EFE admit a well-posed IVF, and in that sense settles the status of
determinism. But not all spacetimes are globally hyperbolic. This property is in fact the top of a
hierarchy of restrictions on the global causal structure of 〈M, gab〉. There are solutions of EFE in
which this property, and properties further down in the hierarchy, fail to hold. Perhaps the most
famous of these is Gödel spacetime, which does not contain a global time slice Σ and has closed
timelike curves (CTCs) passing through every point. Such spacetimes are causally so pathological
that the very application of the concept of determinism remains unclear. But there are cases in
which we can assess determinism when global hyperbolicitiy does not hold. Here we will consider
briefly two very different examples, which challenge whether globaly hyperbolicity is necessary or
sufficient for determinism in GR.

Global hyperbolicity may not be a necessary condition for determinism. The discussion above
restricted attention to the type of initial value problem natural for hyperbolic equations: initial
data specified on a slice Σ, with no need to specify boundary conditions on a timelike surface. But
EFE allows for quite different set-ups, including initial-boundary value problems with input data
specified on a cylindrical surface Σ ∪ T (consisting of a spacelike ‘end cap’ Σ and timelike sides T ,
see figure 1). Friedrich and Nagy (1999) formulated the initial-boundary value problem for vacuum
EFE, establishing that appropriate initial data on a surface Σ∪T determine the solution within the
cylinder. This new setting leads to significant technical complications. In particular, there is not a
clean separation between the dynamical evolution of the initial data and the constraints imposed
on Σ, and further conditions have to be satisfied where Σ and T meet. Establishing whether two
sets of initial data generate the same ‘spacetime geometry’ is also more challenging. Yet this set-up
is particularly useful for problems in numerical relativity.22

It is possible to formulate a well-posed initial-boundary value problem for EFE with remark-
ably weak assumptions about causal structure. Anti-de Sitter (AdS) spacetime is the maximally
symmetric solution with Λ < 0, often studied in string theory. The light cones ‘broaden out’, such
that the solution fails to be globally hyperbolic. Given a slice Σ and a point p in I+(Σ), there are
past directed causal curves from p that do not intersect Σ. This suggests, just as in the example of
Newtonian space invaders mentioned above, that initial data on a slice Σ do not fix future evolution
due to the possibility of a disturbance coming ‘from infinity’. Despite this bizarre causal structure,
there is evidence supporting the conjecture that EFE admit a well-posed initial boundary value
problem in AdS for suitable boundary data on a timelike boundary.23 The conjecture holds that

21Earlier studies led to the formulation of various conditions needed to ensure the existence of an IVF for hyperbolic
PDEs; global hyperbolicity is an extension of these earlier conditions to the context of general relativity.

22See Reula and Sarbach (2011) for an overview.
23See Holzegel et al. (2020) for a statement of the conjecture, discussion of evidence for asymptotical stability of
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AdS is asymptotically stable for optimally dissipative boundary conditions, with maximal energy
flux through the timelike boundary. (By contrast, AdS appears to be unstable for the other extreme
boundary condition — namely, a reflecting boundary with vanishing flux.)

In terms of the implications for determinism, these types of solutions lead to questions similar to
those raised by the space invaders example in Newtonian physics. In the Newtonian case, do we take
the equations to describe a system with a fixed number of interacting particles? The affirmative
answer often assumed in applying the theory implicitly imposes boundary conditions on a timelike
surface. Similarly, treating gravitational degrees of freedom in AdS as part of an initial boundary
value problem leads to a well-posed problem only if we impose further conditions on the timelike
boundary. In this case, the appropriate boundary conditions require that the system constantly
“leaks” energy associated with the gravitational degrees of freedom, preventing the amplification
of perturbations reflecting from the boundary. Obviously this boundary condition does not itself
follow from the dynamics, but has to be, in effect, imposed by hand as part of setting up the
problem. The result shows that, at least in this specific case, the threat to deterministic evolution
left open by the failure of global hyperbolicity can be countered by a global stipulation with a
strikingly different character. We do not know whether other non-globally hyperbolic spacetimes
also admit well-posed initial-boundary value problems. In any case, although we will not pursue
the point in detail here, this case raises similar questions to those we discuss below regarding global
hyperbolicity.

Let us turn now to the question of whether global hyperbolicity is sufficient to guarantee a form
of determinism. To state the problem clearly we need to first introduce the idea of an extension:
a spacetime 〈M, gab〉 can be extended if it is isometric to a proper subset of another spacetime.24

An extension of a spacetime is maximal if it is inextendible, i.e. it is not isometric to a proper
subset of another spacetime. The result cited above establishes that appropriate initial data fix
a solution throughout the domain of dependence (up to isomorphism); but are they sufficient to
establish global uniqueness? Suppose that the domain of dependence has a future boundary, called
the Cauchy horizon, H+(Σ); what determines evolution in the regions beyond this boundary?

Taub-NUT spacetime, a solution of the vacuum EFE, illustrates a failure of global uniqueness.
One region of this spacetime has global slices Σ with a non-trivial domain of dependence (the Taub
region of the spacetime), which is thus globally hyperbolic; however, D(Σ) is not maximal and it
admits of multiple extensions (the NUT regions) — see figure 2. Topologically the Taub region is
S3 × (t−, t+), bounded by Cauchy horizons at t− and t+ (∈ R) generated by closed null geodesics.
For any point in the Taub region, there are complete null geodesics that cross the horizon, but there
are also incomplete null geodesics that spiral towards the Cauchy horizon. Despite this singular
behavior, the Taub region admits two extensions in both directions – that is, through H+(Σ)
and H−(Σ). The sense in which the existence of these extensions leads to a failure of uniqueness
is surprisingly subtle, however (Chruściel and Isenberg 1993): the two extensions through either
horizon are locally isometric, but combinations of the different extensions through both horizons
can generate non-isometric spacetimes. To illustrate this, let us call the bottom two extensions in
figure 2 before t− ‘legs’ and the top ones after t1 ‘arms’. The two legs are locally isometric, and so
are the two arms. However, the spacetime resulting from adding, say, the left arm and the left leg
is not isometric to the one resulting from adding the left arm and the right leg.

Chruściel and Isenberg (1993) generalize this result based on the study of two other families
of exact solutions with Cauchy horizons: there appear to be multiple non-isometric extensions in

AdS to linearized perturbations with dissipative boundary conditions, and further references.
24That is, it can be extended if there exists a spacetime 〈M′, g′ab〉, M ( M′, and an isometric embedding φ :
M → M′ such that ∀p ∈ M′, φ∗(gab(φ−1(p))) = g′ab(p). We can further refine this definition by specifying the
differentiability class of the isometries.
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Figure 2: In Taub-NUT spacetime, the Taub region has two extensions (NUT regions) each to
the future and the past. Although the figure shows all these extensions at once, we only mean to
highlight the distinct possibilities, and not that the spacetime is itself in some sense ‘branching’.

cases where, as in Taub-NUT, the Cauchy horizon consists of disconnected components. In these
cases the failure of uniqueness has a striking global character, since it only arises in considering
extensions through disconnected components of the Cauchy horizon. There is further work to be
done to establish that uniqueness also fails due to local extensions through a Cauchy horizon.

If such cases are deemed to be physically possible, then even though EFE locally admits a
well-posed IVF this cannot be extended to prove global existence and uniqueness. We will explore
below various different stances on whether this simple example can be ruled out in some way.
The extensions may necessarily exploit symmetries of these exact solutions, running afoul of the
requirement of stability, or perhaps the unusual causal structure of these models is objectionable.
But we should emphasize here that these different responses share one feature, namely that they
introduce a definition of physical possibility that goes beyond imposing the local dynamical laws.
In fact, this is necessarily so, as the Taub-NUT spacetime and similar examples are solutions of
EFE.

We now move to the discussion of the three approaches of saving determinism in GR, focusing
on global hyperbolicity as an at least necessary condition for determinism. These three approaches
conceive of the status of global hyperbolicity as a condition (i) to be stipulated a priori, (ii) to
be proved from weaker assumptions within GR, and (iii) to be confirmed — or infirmed — from
physics beyond GR.

5 Global Hyperbolicity by Fiat

Global hyperbolicity is the primary condition necessary to insure determinism in GR (modulo the
concerns in the previous section). The first approach to explicate the status of the global condition
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of global hyperbolicity essentially stipulates its validity. It is based on a transcendental argument
in that its imposition by fiat acts as a condition for obtaining a sensible physical theory. This kind
of argument is not without precedent: We routinely ask our theories to satisfy certain conditions
dictated by the mathematics. For instance, in classical mechanics, the Lipschitz condition is im-
posed in order to satisfy an antecedent condition of important existence and uniqueness theorems
for the PDEs capturing the standard IVF. Thus, its violation leads to forms of indeterminism as
exemplified in Norton’s dome.

In spacetime physics, one routinely requires that the manifold be a Hausdorff space, i.e. a
topological space such that any two distinct points have disjoint neighborhoods.25 Typically, de-
manding that a spacetime manifold be a Hausdorff space is not considered a stipulation with all the
advantages of theft over honest toil, but instead a refinement of what is needed mathematically to
formulate a sensible theory. Roger Penrose (1979, 595) affirms this when he writes that “I must...
return firmly to sanity by repeating to myself three times: ‘spacetime is a Hausdorff differentiable
manifold; spacetime is a Hausdorff...’ ” The need to refine our definition of a manifold only became
apparent with the recognition of bizarre non-Hausdorff cases, e.g., the cases of branching space-
times considered, but rejected, by Penrose. Although explicitly defended e.g. in Belnap (1992)
and McCall (1994), John Earman (2008) argues that actually branching individual spacetimes are
not necessary to model indeterminism. We share Earman’s viewpoint: our characterization of
(in)determinism does not require actual branching of spacetimes. Furthermore, and more to the
point, Earman (2008, §3) shows that important theorems assume the Hausdorff property. The
theorems listed by Earman exemplify the sense in which the Hausdorff property is considered part
of the mathematical machinery necessary for a sensible formulation of GR. Although advocates of
branching spacetimes have responded by articulating how appropriate generalizations of the notion
of manifolds circumvent such problems to some degree (Placek and Belnap 2012; Müller 2013; Luc
and Placek 2020), it ought to be noted that the non-Hausdorff manifolds are deployed by these
authors to fulfil a rather different representational task: the non-Hausdorff structure represents a
space of ‘possible spacetimes’ all crowded into a single manifold.

With the standard representational duties in GR in mind, the Hausdorff property is thus rou-
tinely stipulated or implicitly assumed in order to guarantee the smooth workings of the mathemat-
ical apparatus. The idea behind taking the status of global hyperbolicity to be that of an a priori
demand on candidate spacetime models in GR is rather similar: all globally hyperbolic spacetimes
are straightforwardly amenable to a well-posed IVF.

The problem with this approach is that global hyperbolicity is not obviously analogous to
the Hausdorff condition, as it turns out that one can formulate a sensible theory in non-globally-
hyperbolic spacetimes.26 While the latter is widely acknowledged to be a mathematical condition
that imposes no physically relevant constraint, global hyperbolicity is thus a substantive assump-
tion. Even if one thinks that determinism is a central physical principle without which no physical
theory can operate, enjoining global hyperbolicity thus requires a similarly substantive argument
why we ought to accept its a priori status. An immediate objection to any resistance to demanding
global hyperbolicity would be to question the relevance of non-globally hyperbolic spacetimes, for
example spacetimes with CTCs in their maximal extension. Given that we take our universe to
have the kinds of features it has, we would not expect that it be best described by a spacetime with
CTCs.27 The problem with this objection is that if successful, it would only imply that the actual

25There are other routine requirements with a similar character, for example that spacetime must be “as large as
it can be” or free of holes. We do not have space to consider hole-freeness conditions in detail here, but see Manchak
(2016); Doboszewski (forthcoming) for excellent recent discussions.

26Cf. Friedman (2004).
27A possible exception to this are Kerr-Newman spacetimes, which contain CTCs in their maximal analytic exten-
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world is deterministic. It would not, however, have any implications as to whether the theory—
GR—is deterministic or not. To the extent to which we are interested in a question about GR, we
have to consider the full space of solutions, rather than just some particular solutions that happen
to be useful in some particular situations. But this means that we shouldn’t simply accept global
hyperbolicity as an additional condition which is tacked onto GR in the same way that we ask our
manifolds to be Hausdorff spaces.

Now it seems odd to ask whether we could establish, by observation, that spacetime is Hausdorff.
However, one may reasonably hope to justify global hyperbolicity, just because it is a physically
substantive assumption, not by fiat, but through respectable a posteriori observation. The well-
known problem is that observations from the confines of a spacetime point, or even a compact region,
underdetermine the cosmological model that best describes our actual universe.28 Recently, JB
Manchak (2009) has proven that, barring one type of pathology, every spacetime is observationally
indistinguishable from some other spacetime with different global structure, even fixing all the
local properties of the spacetime such as the validity of EFE. The exception includes spacetimes in
which there is a point p ∈M such that I−(p) =M. Not only can all of the spacetime be surveyed
from one point in this case, but it can be shown that these spacetimes all contain CTCs. Since
spacetimes of this class are thus not globally hyperbolic, this exception is not going to do any work
for the defender of a posteriori global hyperbolicity: either the spacetimes are already non-globally
hyperbolic, or else their global structure is underdetermined.

This result in itself does not completely spoil this line of reasoning. For even though the global
structure of spacetime is generically underdetermined given I−(p) for any p, it could still be the
case that partial determinations of global structure can be made. In particular, it could be hoped
that the global hyperbolicity can be observationally established, at least in principle, while the
complete global structure cannot. Alas, Manchak (2011) proves that we cannot even make, locally,
the determination of whether spacetime is globally hyperbolic.29 In his interpretation, this means
that although our universe may in fact be globally hyperbolic, we cannot know that it is.30 It
shouldn’t strike us as particularly surprising that it cannot be determined, from causal information
available at a single point, whether or not spacetime is globally hyperbolic, i.e. effectively whether
the causal signals emanating from everywhere in spacetime must all intersect a global time slice.31

Global hyperbolicity seems to be a property of spacetimes squarely at odds with the project of
determining what constrains the global spacetime structure, given our epistemic limitations.

Thus, global hyperbolicity cannot legitimately be established by fiat and not possibly by obser-
vation. Consequently, it assumes the status of a substantive open issue that must be attacked with
all the resources the theory can offer. In fact, the (strong) cosmic censorship hypothesis, roughly
the hypothesis that all physically reasonable spacetimes are globally hyperbolic, is widely held to
be the most important open issue in the foundations of GR. Attempts to prove censorship theorems
from the resources of GR, and thus to show that global hyperbolicity can be inferred from weaker
assumptions, is the topic of the next section.

6 Censorship Theorems

Hawking motivates censorship theorems as follows (Hawking and Penrose 1996, 10):

sion; they describe rotating, charged black holes, which are believed to be present in many regions of spacetime.
28Cf. Glymour (1977) and Malament (1977).
29This theorem also excludes the same pathological cases.
30If our universe fails to be globally hyperbolic, however, then we may know that (Malament 1977).
31Assuming that causal signals propagate along causal curves, and that these curves exemplify the necessary

conditions of inextendibility.

13



... [G]lobal hyperbolicity may be a necessity. But my viewpoint is that one shouldn’t
assume it because that may be ruling out something that gravity is trying to tell us.
Rather, one should deduce that certain regions of spacetime are globally hyperbolic
from other physically reasonable assumptions.

The input assumptions include constraints on the matter sources plugged into EFE and a require-
ment that the initial data are appropriately ‘generic’; a proof would show that such initial data yield
globally hyperbolic maximal developments. The name derives from the idea that gravity would act
as a ‘censor’, effectively preventing failures of causality from occurring or (in a weaker version of
the hypothesis) keeping failures of causality hidden behind the event horizons of black holes. Given
a successful proof, gravity would be telling us that the local existence and uniqueness theorems for
GR can be extended globally, ruling out multiple extensions such as the example from §2. In more
physical terms, these results would vindicate Penrose’s seminal idea that physical effects near a
Cauchy horizon generate curvature singularities, preventing extensions.

Although it is difficult to formulate the input assumptions precisely, they are arguably well-
motivated by the desire to isolate dynamical effects of GR. There are two distinct issues. First, one
limits consideration to ‘suitable’ matter fields—those that do not themselves develop singularities
in Minkowski spacetime. The idea is to separate singularities due to the matter fields themselves
from those due to gravity; it rules out, for example, certain types of fluids because they develop
singular shock waves. The second qualification allows that there may be cases based on highly
‘special’ initial data sets (e.g., with a high degree of symmetry) that lead to a failure of uniqueness.

This leads to the following formulation of strong cosmic censorship (SCC) (Chruściel 1991).
Given (i) a space of initial data X (Σ, hab, kab), satisfying the Gauss-Codacci constraints, supple-
mented with appropriate initial data for matter fields; and (ii), a collection of four-dimensional
Lorentzian manifolds S(M, gab) where the metric gab has some specified differentiability class.
Strong cosmic censorship then states that there is a set G(Σ, hab, kab) in X (Σ, hab, kab) such that
the maximal globally hyperbolic development (MGHD) for every data set in G is inextendible in
S(M, gab). G is a proper subset of X , as one needs to impose some further conditions in addition to
the constraints to ensure that the initial data are themselves ‘maximal’ in an appropriate sense.32

We further require that G must be an open, dense set in an appropriate topology. This reflects the
stability physicists usually require for a well-posed IVF, mentioned at the end of §3, but faces the
same challenges. Specifying what qualifies as ‘special’ or ‘generic’ initial conditions requires intro-
ducing a measure or at least a topology on the space of initial data; but as Wald (1998) emphasizes,
there is not currently a standard measure or topology on the space of initial data, or solutions, that
we can appeal to.33

There are several purported counterexamples to SCC in the literature, in the form of initial
data with MGHD that admit non-isometric extensions given a choice of S(M, gab). Yet there are
active debates regarding the implications and the appropriate response to these results.

Regarding our example from §2, we need not worry about singularities arising from matter fields
because Taub-NUT is a vacuum solution. However, stability considerations would presumably rule
it out as a counter-example due to the symmetry of the spacetime. There are some results indicating
that Cauchy horizons are ‘special’ in the sense of being measure zero in the space of solutions of EFE.
For example, Moncrief and Isenberg (1983) prove that in a particular case (namely, granted that
the Cauchy horizon is compact, analytic, and ruled by closed null geodesics) there are symmetries

32These must at least include a requirment that the initial data are complete or satisfy ‘fall-off’ conditions (such as
asymptotic flatness); otherwise initial data specified on an compact region on a spacelike hypersurface in Minkowski
spacetime provides a counterexample. See, e.g., Ringström (2009) for further discussion.

33The challenges are similar to those Fletcher (2016) identifies with finding a topology on the space of spacetimes.
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in the neighborhood of the Cauchy horizon. As a result, this family of solutions would not be
expected to fill an open set of initial data in any reasonable topology. Moncrief and Isenberg
(2020) have extended their results regarding the existence of symmetries to cover a broader class of
spacetimes with Cauchy horizons. General results along these lines support SCC by showing that
the existence of Cauchy horizons does not hold generically, for open sets of initial data, rather than
just for specific cases.

Alongside work showing that purported counterexamples fail the stability requirement, there
are a number of theorems establishing global uniqueness for specific choices of G. In the best case, a
proof of SCC would follow for all initial data satisfying modest requirements, such as completeness
and fall-off conditions. Current results fall short of that aim, but show that the SCC holds for
several quite different families of models. For example, Christodoulou and Klainerman (1993)
established the stability of flat spacetime to small perturbations; roughly, for initial data ‘close
to’ Minkowski spacetime, with appropriate decay at spatial infinity, D(Σ) is inextendible. Studies
of polarized Gowdy spacetimes (a family of symmetric spacetimes with two independent spacelike
Killing fields) have shown that, generically, curvature invariants blow up along curves approaching
the Cauchy horizon. These results establish the existence of a singularity which prevents extensions
through the horizon.34 Ringström (2009, Part IV) considers the fate of the SCC within the Bianchi
models, and shows that they fall into two classes: the first exhibit curvature singularities, so that
the MGHD cannot be extended, whereas the second class do admit non-isometric extensions of
the MGHD. Yet Ringström further shows that all of the models in this second case have a further
symmetry, suggesting that they would fail to satisfy the stability requirement. In sum, present
results constitute a patchwork, showing that the SCC holds for a variety of specific choices of
initial data but falling short of a fully general result.

A different set of issues arises with regards to the choice of S(M, gab): in particular, should this
set include Lorentzian manifolds where gab is continuous (C0) but lacks well-defined derivatives?
Several purported counterexamples to SCC assume a positive answer. Dafermos and Luk (2017), for
example, construct a continuous extension through the Cauchy horizon in Kerr solutions. Yet the
physical significance of merely C0 metrics is not clear. Second derivatives of the metric appear in
the Einstein tensor appearing in the EFE, suggesting that we should impose stronger requirements
— most straightforwardly, that gab is at least C2, but slightly weaker constraints may allow for
EFE to be well-defined in a distributional sense at the Cauchy horizon (Earman 1995, pp. 46-50).

Furthermore, it should be noted that the choice of S(M, gab) has implications for the very
definition of what it means for a MGHD to be ‘extendible’.35 The property of ‘inextendibility’
depends on what one takes the set of relevant models to be: one and the same Lorentzian manifold
may be inextendible with respect to one background collection of models, but extendible with
respect to another. Restrictions to ‘physically reasonable’ models, P ⊂ S, impact assessments of
modality. Manchak (2018) argues that for every non-trivial choice of P, it is not the case that
every P-inextendible P-model is inextendible in S. This obviously has a direct bearing on debates
regarding the SCC, given that alleged counterexamples may fall outside some chosen collections P.

Decades of effort have led to much sharper formulations of the SCC, yet the proof of a general
version of the SCC has remained elusive. But perhaps the results that have already been achieved
are sufficient; in what sense would a patchwork quilt of stability results answer our original question
regarding whether GR is deterministic? In the best case scenario, the sets G for which SCC holds
would cover all the solutions used in black hole physics or cosmological modeling. This would involve
a much more parochial sense of physical possibility, as it would apply directly to only a subset of

34See Isenberg (2015) for further discussion of Gowdy spacetimes, and (Andersson 2004) for a more general review.
35We thank a referee for pointing this out to us.
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the full solution space of GR. Although the question of whether classical GR is deterministic, full
stop, would remain unresolved, such results would provide assurance that no failure of determinism
would crop up in the applications of GR to physical systems covered by results making up the quilt.

7 Incompleteness of GR

Nobody expects GR to be the last word on gravitation. Accordingly, an advocate of global hyper-
bolicity may draw hope from the fact that non-globally hyperbolic spacetimes may be incompatible
with the quantum. As it turns out, however, the direction the physics literature indicates in this
respect is far from unambiguous. For instance, considerations in semi-classical quantum gravity
(QG) pull both ways. On the one hand, the usual point-wise energy conditions all fail for quantum
fields. Thus, quantum effects may undermine efforts to establish cosmic censorship from assump-
tions concerning what energy conditions the energy-matter content of the universe may reasonably
be expected to satisfy. On the other hand, quantum effects may effectively act as barriers at Cauchy
horizons, cutting off spacetime extensions beyond the globally hyperbolic domain.36

While results in semi-classical QG pull both ways, an attempt to formulate a QFT on curved
spacetimes may provide respectable grounds to stipulate global hyperbolicity from the get-go. A
standard recipe for obtaining a natural algebra A(M, gab) of observables for a quantum field defined
over a spacetime 〈M, gab〉 only succeeds if the spacetime is globally hyperbolic. But the defender of
global hyperbolicity will not find much solace in this, for two reasons. First, since QFT on curved
background spacetimes does not consider the backreaction of the quantum fields on the spacetime
it has no prayer of being a fundamental theory; at best, it is a 0th approximation to a full quantum
theory of gravity that can be useful to model the weak-field regime. Second, it seems possible that
the conditions necessary for the construction of the algebra of observables may be weakened in such
ways as to enable the procedure to apply to non-globally hyperbolic spacetimes. To be sure, some
of these relaxations are problematic; but it is far from clear how sacrosanct the condition of global
hyperbolicity really is.37

Of course, only a full theory of QG will be able to give more authoritative answers. But
since there exists such a plethora of competing approaches, it is currently impossible to draw
many general conclusions from research in QG. One possibility that must be taken into serious
consideration, however, is the suggestion offered, in one form or another, by many approaches
to QG that spacetime fails to be fundamental, but instead emerges from an underlying, non-
spatio-temporal stucture (Huggett and Wüthrich 2013). In this case, it may become impossible
to straightforwardly connect global hyperbolicity, in the sense defined above, to this fundamental
structure. Assuming, however, that this can be done—as it has to in order for the theory to have a
meaningful classical limit—, we see in principle three different manners in which the issue of global
hyperbolicity may play out in QG. First, it may be postulated by fiat (as discussed in §5) as a
transcendental condition for the approach. This is unproblematic as long as it is understood that
the assumption ultimately requires either independent support or else justification ex post facto
from the success of the theory based on it. Second, global hyperbolicity, or what amounts to it in
the appropriate classical limit, may be derived from the resources of the approach itself, or from
conditions solidly grounded in considerations concerning what is physically reasonable drawing,
perhaps, on the resources of other theories. As a third possibility, it may turn out that global
hyperbolicity or its quantum analogue is not vindicated by the fundamental theory. In this latter
case, it is hard to imagine a sound reason for insisting on global hyperbolicity at the classical level.

36For a survey of related results, cf. Earman et al. (2009, §5) and Smeenk and Wüthrich (2011, §7).
37For further details, cf. Earman et al. (2009, §6).
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The third possibility could be borne out in string theory. There are strong indications that
at least in five-dimensional supersymmetric gravity, a close relative to string theory, analogues
of spacetimes with CTCs exist and thus violations of global hyperbolicity may occur (Gauntlett
et al. 2003). Since solutions of the five-dimensional theory can easily be worked up to solutions
for ten- and eleven-dimensional supergravity, the situation in string theory is arguably not much
different from the one in GR. The second option above would amount to an attempt to prove
an analogue of cosmic censorship in full QG. Finally, several approaches, among them causal sets
and loop quantum gravity (LQG), go for the first alternative, i.e., they essentially impose global
hyperbolicity or a close cousin ab initio.38 The canonical quantization procedure applied in LQG
simply requires global hyperbolicity in order to get traction. However, an alternative viewpoint
conceives of LQG not as primarily a theory concerned with the global structure of spacetime,
but rather as offering a quantum theory of small patches of spacetime as may be measured in a
laboratory. This alternative would view LQG not as cosmological, but instead as concerned with
local physics (Wüthrich Forthcoming). We believe that it is unfortunate that this viewpoint is
rarely taken seriously, but submit that according to it, LQG could not be a fundamental quantum
theory of spacetime capable of accounting for the global structure of spacetime.

As is evident, once again, the field is simply too rich to draw robust general conclusions con-
cerning the fate of determinism. But even though this may come as a disappointment to some, we
believe that the many foundational lessons that can be gleaned from the field make the endeavour
more than worthwhile.

8 Conclusions

In our investigation of the fate of determinism in GR and beyond, we have explored three different
approaches to justifying the imposition of global hyperbolicity. The first approach aimed to justify
this condition directly. Global hyperbolicity is a global property of spacetime, and it generally
cannot be established via observations of a local region. So it appears that the condition has to
be treated as an a priori constraint, and we considered, but rejected, the possibility of treating it
as a mathematical constraint transcendentally necessary for the formulation of a sensible theory.
The second approach seeks to establish ‘censorship theorems’, showing that global hyperbolicity
holds for some subset of spacetimes that satisfy weaker, physically motivated requirements. While
there are some promising results, this approach is a work in progress and it remains genuinely
open whether it will succeed in establishing global hypobolicity, at least for some relevant classes
of models. Finally, a third approach insists on the need to consider the limits of applicability of
classical GR and its inter-connections with other theories, such as QFT on curved spacetimes, semi-
classical and full QG. Although more speculative, this approach bears the promise to elucidate the
relationship between GR and more fundamental theories towards quantum gravity and thus may
have significant heuristic value for articulating a theory of quantum gravity.

Our discussion of the fate of determinism in GR required a decision regarding the concept of
determinism itself. The standard Laplacian notion according to which the state of the world at
a time, together with the laws of nature, jointly determine the state of the world at all times
naturally translates into the requirement that the (geometric and matter) data on a global time
slice Σ uniquely extend to all of spacetime. The existence and uniqueness of such an extension
thus required for the satisfaction of determinism as usually envisioned by philosophers does not,

38Although it is not obvious what the discrete analogue of global hyperbolicity would be, it seems natural to think
that an adequately transposed condition holds in the causal sets approach. Its basic assumption of acyclicity certainly
rules out CTCs.
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however, suffice for a well-posed IVF as sought after by physicists. In addition, solutions must
continuously depend on the initial data. Although technically involved, this continuity condition, if
added, rules out ‘unphysical’ failures of determinism due to exquisitely fine-tuned initial data. Thus,
the question of determinism in GR raises not only deep and fruitful philosophical and foundational
issues, but it also serves to bring out a contrast between philosophical interests and the demands
of applied mathematics.

We hope to have highlighted, once again, the value of assessing the fate of determinism in
modern physics. There is simply no quick answer to be had, as it depends on a plethora of subtle
conceptual and technical issues in the foundations of the theories considered. But this is what
makes determinism such a central topic in the exploration of physical theories in general, and of
GR in particular.
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Chris Smeenk and Christian Wüthrich. Time travel and time machines. In Craig Callender, editor,
The Oxford Handbook of Time, pages 577–630. Oxford University Press, Oxford, 2011.

John Stachel. The hole argument and some physical and philosophical implications. Living Reviews
in Relativity, 17, 2014.

Robert M Wald. Gravitational collapse and cosmic censorship. In Bala R. Iyer and Biplab
Bhawal, editors, Black Holes, Gravitational Radiation and the Universe: Essays in Honor of
C. V. Vishveshwara, pages 69–85. Kluwer Academic, Dordrecht, 1998.

James O Weatherall. Regarding the ‘hole argument’. British Journal for the Philosophy of Science,
69:329–350, 2018.
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